
AD-AI03 174 SRI INTERNATIONAL MENLO PARK CA F/6* 9/
AUTOMATIC PALMPRINT VERIFICATION STUDY.(U)
JUN 81 J R YOUNG. R W HAMMON F30602"79-C-0207

UNCLASSIFIED RADC-TR-81-161 NLErmmEmnEEmmmI
U'i .EmmEmmmmmEEmmI

EEEEEmmmmmEEEI
Emmmmmmmmmmum
EmmmEEEEmmmmmE
mmmmmEEEmmmmmI

~LEVEVJ

Final Technical Repot
June 1961

AUTOMATIC PALMPRINT
O VERIFICATION STUDY I2 v..

SRI International

James R. Young
Robed W. Hammon

'APPOVED O PU RELEASE; DISTRIBUTIOi UNUMiTED

tL

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

81 8 2 1 0O8i ,- ,.

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-81-161 has been reviewed and is approved for publication.

APPROVED: 4' & o t

JOHN V. FERRANTE, ILt, USAF
Project Engineer

APPROVED:

JOHN N. ENTZMINGER
Technical Director
Intelligence and Reconnaissance Division

FOR THE CONHANDER:

JOHN P. HUSS
Acting Chief, Plans Office

If your addresi has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC.(IRAA) Griffiss AFB NY 13441. This will assist .us in
maintaining a current satling list.

Dolcot return this copy. Retain or destroy.

UNCLASSIFIED

SECURITY CLAS IFICATION OF THIS PAGE (".on Dat.,En.rd)

R W N'O PAGEREAD INSTRUCTIONS

9 BEFORE COMPLETING FORM

R . J _
2. GOVT ACCESSION NO CATALOG NUMBER

" J -- - - Final e hn ca RepWt,
1' AUTOMATIC)ALMPRINT VERIFICATION STUDY " Fa 9-J..an O -

" " "" L --.-----'---6 PERFORMING 01GO. R EPORT NUMWER

SRI Prolect 8788

8. CONTRACT OR GRANT NUMSER()

' " L aon F30602-79-C-0207/

- IZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA 6 WORK UNIT NUMBERS

SRI International 62710H
333 Ravenswood(/ DA12l 7
Menlo Park CA 94025
II. CONTROLLING OFFICE NAME AND ADDRESS

Rome Air Development Center (IRAA) i/ Juno 48l

Griffiss AFB NY 13441 ES
94

14 MONITORING AGENCY NAME 6 ADORESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)

Same UNCLASSIFIED
" I 0IS. DECLASSIFICATIONr DOWNGRADING

N/ASCHEDULE

16. DIsTRIBJTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered s.n Block 20, If different from Report)

Same

18. SUPPLEMENTARY NOTES

RADC Project Engineer: John V. Ferrante, iLt, USAF (IRAA)

19 KEY WORDS (Continue on reveree side if necessary and identify by block nut bet)

Optical Processing Statistical Analysis
Access Control Feature Extraction
Data Reduction

ABSTRACT (Continue on roever&e side It necessary and Identilfy by block number)

A computer-based system has been created using 29 features of hand

geometry to discriminate successfully 278 images of hands taken from
30 male and female subjects over a four-month period. These features
include hand perimeter and area measures, finger lengths and widths,
palm widths, and certain ratios of lengths and widths. A linear dis-
criminant procedure was used to classify all images according to the
subjects from which the images were taken. All images were correctly

DD I JAN 1473 EDITION OF I NOV65 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (*%en Del. U t

" Ju ..L. ,.'v. ." "(-

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(Whan Dale Enlemd)

classified for 100% results.

UNCLASSTIFIIE
SECURITY CLASSIFICATIO1 O1 'OF PAGE(Whn Dos Enle,.d)

' .2 , ..- '

,4. ,-

CONTENTS

LIST OF ILLUSTRATIONS. v

ACKNOWLEDGMENT vii

I INTRODUCTION. 1

II DATA COLLECTION 3

III DATA PREPARATION. 7

A. Data Generation. 7

B. Data Reduction 8

IV DATA ANALYSIS 9

V CIAS3IFICATION RESULTS 13

VI COMPUTER PROGRAM SUMMARIES 19

A. HIST. 19

B. THRESH. 20

C. LINEBYLINE. 20

D. SCAN. 20

APPENDICES

A--COMPUTER PROGRAM LISTINGS A-1

B--DOCUMENTATION OF LINEBYLINE B-i

C--ANNOTATIONS FOR THE SEPARATE SPSS RESULT PACKAGE

(Submitted Separateiy) C-i

Accesion1 For.
NTIS CFA&I
DTIC TAP

L 1.

ILLUSTRATIONS

I Apparatus Used for Data Collection 4

2 Fingertip Location Measurement 10

3 Measurement Points for Lengths of Finger and Thumb 10

4 Finger and Thumb Width Measurement Points. 11

5 Curvature and Distance Measures 12

6 Analysis of Hand Geometry Features 14

7 Analysis of Hand Geometry Features Using Within-Groups

Correlation Matrix 16

II

ACKNOWLEDGMENT

With appreciation, the authors gratefully acknowledge the substan-

tial contributions of the following toward the research reported in

this document:

" Dr. John Ostrem served as a consultant on feature-extraction
methods, on data analysis, and--particularly--on the use of
commercial software used in the statistical analysis of the

feature-extraction results.

" Mr. Gregory Myers supplied the computer program LINEBYLINE
and provided guidance in its application to this research.
He also gave valuable help and advice in feature selection

and analysis.

" Mr. Zev Pressman gave valuable guidance in the design of the
data-collection apparatus and in its initial adjustment and
evaluation.

* Mr. Marshall Wilson recruited subjects, photographed the
subjects' hands, coordinated the film processing, and cataloged
all of the data in the data base.

vii! i PUCE no~ U~aKm-aMO

I INTRODUCTION

This report describes a one-year research and development effort to

determine the feasibility of using hand geometry and other features of

the hand as bases for the construction of an automatic personnel authen-

tication system for access control. The subsequent sections of the

report describe the method and extent of data collection, the method of

data preparation and reduction, the data analysis, the experimental

authentication results, and provide brief descriptions of the computer

programs that were written for this work.

The appendices are photocopies of listings of the computer programs

used and of critical parts of the experimental statistical analysis and

raw data.

Aim

II DATA COLLECTION

Previous access-control systems using hand geometry or fingerprints

have used devices that capture data from physical contact with or proximity

to the hand surfaces being measured. Such contact or closeness can dis-
tort the measurements, particularly if the hand can move or exert pressure.

A measurement system that can avoid distorting the features being measured

will be more reliable, which in turn will reduce the occurrence of incor-

rect authentication decisions.

Precise orientation of the hand in space and precise control of finger

and thumb spread are difficult to accomplish without some mechanical device,

however. To compensate for the variable position of the hand from trial to

trial (because there was no device to hold it in a fixed position) it was

decided to concentrate on adjusting the data. Precise data reduction would

allow easier and more natural interaction between the person seeking auth-

entication and the access-control system.

The system used to collect data is schematically illustrated in Fig-

ure 1. The subject's hand is positioned near the light diffuser; the open

palm faces the camera and the fingers are comfortably spread. The subject's

name and session number are displayed in the upper quarter of the imaged

area and thus become an integral part of the data base.

The data base collected contains 50 subjects, 25 males and 25 females,

ranging in age from the early 20s to 65, in height from approximately 5'

to 6'3", and in weight over a normally observed distribution. The total

number of sessions (five trials per session) was 1020, approximately evenly

divided between males and females. Of these, 997 sessions produced 4985

high-quality images with full gray scale. In the remaining sessions, flash

problems of failure to fire or synchronization incurred; the resultant

images were quite useful for geometric measurements but contain no gray-

scale features.

3

30I.

VIVITAR MODEL 102 ELECTRONIC FLASH
WITH A 0.7 NEUTRAL DENSITY FILTER

HONEYWELL PENTAX His 35m~m SLR CAMERA
, F WITH 55mm f 1:2 ASAHI ISUPER-TAKUMAR) LENS

~~ - 87.5 cm a

t35 x 28 cm DIFFUSER BACKLIGI4TED WITH
FIVE 100W SOFT-WHITE BULBS

APERTURE - f/16
SHUTTER SPEED - 1/30 s

FILM: KODAK HIGH-CONTRAST
COPY FILM 5006

OBJECT MAGNIFICATION: 0.07

FIGURE 1 APPARATUS USED FOR DATA COLLECTION

Negative images have been cataloged and stored in three volumes that

were designed and manufactured for such use. Photo development followed

standard procedures for the black-and-white high-contrast copy film

(Kodak 5069). The film manufacturer states that if storage conditions

are correct (cool and dry) the archival qualities of this film are ex-

cellent--it will retain quality for more than 30 years.

Image quality is also excellent. Correctly focused and exposed nega-

tives have been examined with a 400X microscope, and minutiae are clearly

visible on fingertips.

5

III DATA PREPARATION

A. Data Generation

Two methods were used to obtain digital-image data to be used for

further processing.

" An SRI-built Reticon CCD array scanner (512 elements per line)
interfaced to an LSI-11 was used early in the project.

" A commercially available Eikonix digitizer (1024-element Reticon
x 1500 scan steps) was used to supply final evaluation data.

Data from the first system were generally unsatisfactory because of

a combination of problems. The system interface included a hardware

thresholder for the analog data generated by the Reticon array. The

user can vary the threshold, but it is uniform for all samples coming

from the CCD array. Such an arrangement works well only if the image area

is uniformly lighted, the individual CCD elements are reasonably uniform in

sensitivity, and the scanned images have equivalent niecom densities.

Unfortunately, these conditions were not satisfied, and the uniform hard-

ware threshold was found to be quite unsatisfactory. It is probably

possible to build a system that utilizes a fixed-level threshold for this

type of application; however, such a device with a sufficiently uniform

large field of view was not available, and the uniform-threshold technique
V,

has therefore not been thoroughly evaluate#-?

Thc Eikonix digitizer is an excellent instrument for purposes of

this study. The digitized images generated are 1024 x 1500-element data

each with 8 bits of gray scale recorded on magnetic tape. The real reso-

lution of the data when the film negatives are sampled with this spatial

frequency is two pixels (picture elements) per mm. The system can

automatically compensate for lighting nonuniformities and variable CCD-

element sensitivities. It is also fairly fast: one complete cycle of

generating and recording an image requires about one minute. All of the

data used to generate the results appearing in this report were collected

through the Eikonix system.

7

IEPIGDIM PAM R~ANK-NOT P2 IM

B. Data Reduction

Image data on magnetic tapes were transported to a PDP 11/40 computer

system in SRI's Bioengineering Research Center. Each image was reduced

by extracting the pertinent 512 x 512-element field and by thresholding

to a binary image. Finally the binary image was reduced to a hand-

perimeter list of X-Y coordinates that was stored on a DEC RK 05 disk.

Although this process is somewhat involved, it does provide final data

that are quite reliable and easy to work with in subsequent computations.

(It is to be noted that the final data set generated by this procedure

does not include any information about a subject's hand other than the

perimeter coordinates in a 512 x 512-element field.)

A very important feature of the data-reduction process is the method

used to compute the perimeter list from a 512 x 512-element hand image.

The method involves using a computer program (LINEBYLINE) that was de-

veloped earlier at SRI and recently rewritten in PASCAL for use on the

PDP 11/40. The program generates the perimeter list while accessing the

image data one line at a time, starting at one edge of the field. This

implies, for a practical system, that a minimum of memory and data buffer-

ing is required; consequently, 'there is a significant saving of money and

execution time.

8i

- '.. -... -
,..5. S

IV DATA ANALYSIS

The basis for the analysis and the geometric features that have

been extracted is, in each case, a list of the X-Y coordinates of the

hand perimeter. Such a perimeter is described with a real resolution

of two pixels per mm.

All measurements are based on landmarks that are easily identified

on the perimeter; the tips of the fingers and thumb were selected for

this study. These landmarks were identified by calculating a coarse

curvature function over the perimeter and finding criterion shifts in

the angle of a tangent to the perimeter. Tangents were estimated by

passing an 18-point window over the perimeter and using the window end

points to define a vector in the X-Y image plane. The window was moved

in nine-point increments. This analysis gives a rough estimate of the

tip location.

The rough estimate is refined by locating four additional points

on the finger, two found 25 mm away along the perimeter on each side

of the estimated tip and two more found 35 mm away on each side. The

virtual lines connecting each pair of points are bisected, and the inter-

section of the tip and the line defined by the bisection points is de-

fined to be the actual tip location. This process is illustrated in

Figure 2. After a precise location for each tip is established, the

following features can be extracted:

" Features 1 through 5 are lengths of the fingers and thumb,
starting with the little finger. Lengths are measured from
the tip to the depth of the interdigital space as illustrated
in Figure 3.

" Features 6 through 10 are widths of the fingers and thumb.
A width is the distance between two points on the perimeter
of a finger; the points are 45 mm down the perimeter on each
side of the tips of the little finger and the thumb, and 60 mm
on each side of the other f .gertips. Width measurement
points are illustrated in Figure 4. These features are
ordered as were the first five.

9

J CAL -

FINAL TIP POSITION

1 25rm ', ROUJGH ESTIMATE OF TIP

FIGURE 2 FINGERTIP LOCATION MEASUREMENT

FIGURE 3 MEASUREMENT POINTS FOR LENGTHS
OF FINGERS AND THUMB

10, 1

FIGURE 4 FINGER AND THUMB WIDTH MEASUREMENT
POINTS

* Features 11 through 15 are ratios of the measurements of finger

lengths to widths.

* Feature 16 is the hand width measured between two points on the
palm. One point is 9 cm on the perimeter from the tip of the
little finger toward the wrist and the other is 11 cm on the
perimeter from the tip of the index finger toward the thumb.
These points are labeled 2 and 11, respectively, in Figure 4.

* Features 17, 18, and 19 are the hand perimeter, hand area, and
the ratio of the squared-perimeter length to the area. The
perimeter and area are measured from point 1 to point 14 in
Figure 4. Point 1 is 13 cm on the perimeter from the tip of
the little finger, and point 14 is 10 cm on the perimeter from
the tip of the thumb.

0 Ten features, 20 through 29, are paired values corresponding
to the curvature of each fingertip and the distance over which
the tip shape can be represented by a circular arc with less
than a criterion value of rms; (root mean square) error. The
process of extracting a typical feature pair is illustrated in
Figure 5. A tangent to the perimeter, such as T, has an angle,
a, as shown. If at is plotted as a function of distance along
the perimeter defining a finger, then a plot such as the one
shown in Figure 5 results. The slope of the plot between P1
and P2 is related to the curvature of the tip. The slope is
recorded as the curvature. A correlation calculation over the
region containing this characteristic region yields a high value

11t

-. , 1I :

T

-j

z

P1 P 2

PERIMETER

FIGURE 5 CURVATURE AND DISTANCE MEASURES

until the boundary of the region extends into the flat segments
on either side of the sloping section. Pl and P2 are the boundary
points when the correlation coefficient (using a straight-line
fit to the sloping region) falls to 0.98. The distance between
PI and P2 is recorded as the perimeter length over which the
fingertip can be approximated well with a circular arc.

In summary, hand geometry is expressed as a set of 29 features that

are measured by locating precisely five landmarks on the perimeter of the

hand--the tips of the fingers and the thumb. The feature set contains

16 measures of lengths and widths and ratios of lengths and widths, and

three measures of area or area and perimeter length. Ten measures of

shape (curvature) are included.

12

O'sa

V CLASSIFICATION RESULTS

Thirty subjects (15 male, 15 female) were selected randomly from

the subject population and 278 images taken from the selected subjects

were digitized. The data were converted to perimeter lists and sets of

29 features were extracted. The data were submitted to a standard sta-

tistical analysis program* to determine the power of the extracted

features in discriminating among the 30 subjects. Linear discriminant

analysis was performed and all 278 feature sets were correctly classi-

fied for all subjects. The detailed results of this analysis, as well

as the feature data set, are submitted as a separate package. Annotation

for this package is included as Appendix C.

Of critical importance are indicators of value and reliability of

the various features selected. One such indicator is the uaivariate

F-ratio, a number that expresses the ratio of between-groups variation

of a given measure and the within-groups variation of that same measure.

Large values of F indicate that a measure will be relatively useful in

separating groups (or samples from different subjects) and small values

predict that a measure will do poorly. Figure 6 summarizes the F-ratios

of the selected 29 features over the 30-subject, 278-sample data base.

All of the features appear to be useful and reliable, especially

the more global measures of hand width, perimeter, and area. Some mea-

sures, notably the curvature and distance measures associated with the

thumb are marginal as presently calculated. They could be made more

useful by improving the algorithm that deals with the curvature of the

perimeter in the vicinity of the thumb and by locating the thumb tip

more precisely.

Statistical Package for the Social Sciences (SPSS), Version 7.0.

13

WILKS LA48DA (U-STATISTIC) AND UNIVARIATE F-RATIO

VARIABLE VILICS LA SDA "F-

FEATUROio083l .0832 . 94.2725

FEATURO2 .1984 34.5555
FEATUR03 .0326 253.7253
FEATURO4 .0411 199.7288
FEATUR05 .1254 59.6Z65

FEATUR06 .0889 87.6057
FEATUR0 .0884 88.1511

FEATUROS .0497 163.4109

FEATUR09 .0396 207.2642
FEATUQIO .346 16.1010
FEATURlI .1150 65.8000
FEATUR1Z .2728 22.8001
FEATURI3 .0961 80.a4311
FEATUR14 .0704 113.0063
FEATUR15 .3051 19.4798
FEATURT6 .028Z 295.1276
FEATUR17 .0185 453.6141
FEATUR18 .0152 554.9767
FEATUR19 .0450 181.5804
FEATUR2O .4010 12.7763
FEATURZI .1229 61.0282
FEATUR2Z ,1865 37a3090
FEATURZ3 .2264 29.2203
FEATUR24 .1555 46.4599

FEATUkZ(,1325 55.9899
FEATUR26 .4777 9.3499

FEATURZ? .2048 33.1988
FEATUR28-74087 3.5142
FEATUR29 .5388 7.3202

FIGURE 6 ANALYSIS OF HAND GEOMETRY FEATURES

14
-~ ~c. -

In general, it appears that the measures used are being generated

very reliably, which results in good (high) F-ratios. One difficulty

in previous systems that used hand geometry for authentication was un-

reliable measures of certain features, with correspondingly small

F-rat ios and poor discriminating power.

Figure 7 gives more information about the quality of the feature

set. In this table, the within-groups correlation matrix is listed.

The correlation matrix is used to express the degree to which pairs of

features are correlated or dependent. Circled are the two largest mag-

nitudes of correlation values, corresponding to the pairs

*Second finger length and the ratio of its length and width

*Thumb width and the ratio of its length and width.

It is to be expected that ratios of features and the features themselves

will tend to have relatively large correlation magnitudes, and the data

in Figure 7 substantiate this expectation. However, the SPSS results

show that all features contribute positively in the discriminant analysis.

In sunmary, we have been able to improve on previous attempts to use

features of the hand for access control in the areas of accuracy and user

comfort. This has primarily been the result of removing the requirements

on both the subject and the mechanical device that produced either a

distortion of the data or discomfort for the individual. Instead, we

have required the software to do all the registration and measurements.

The result is a fast and reliable method that demands only a minimum of

effort from the individual requesting access.

If this technique were to be packaged into a commercial product,

we estimate that the throughput rate could be less than two seconds.

The rate-limiting step in the process is data acquisition from the

scanner through an interface and into a computer. The throughput rate

of a practical interface could be in excess of 275K bytes per second.

Because each image contains 256K bytes, the transfer would take about

one second. This data rate is well within the state of the art of

image production using a scanning linear-array system. Because the data

can be analyzed a line at a time, and therefore analyzed as it is

15

I::lUBQl 3.00.1000129 100j
F14140b .30103 -.063 .1333).800 1.00000

906 .032*1 -.b09 .1390 .500 .1 1.00 440
901G4710.0 1 00) .)7 .109 .1099 .00)_ :1.0000 60"
PloluBo ese -. 0994 009 5)0 .06 0647~ l3oss iSS2_________________

9000 .11396 .001 .060) .11300 .1195 .50160 .010 .41849 1.0000
I A 1k .4633 ."Sit____ -. 02114 -.049176 -. 15119 .919 *1? .90 .33

.040,12 - .1054 .00590 -903~))41~fr
93410.35 *3066 -0011 .04006 -.6053 -.16931 -.$loss -. 1560 .tell*3

Yr31NtDVAB?04191004" - s - :173784

F141921 .00193 .2091060 9014 A k19

fukis.9 .33 -.Gloss L20140 .1311 -. 000 -. 411 -.44875 -.I1ly* -.11010

3.1 G16 -. 02010 -. 400 -. 0)0? -_.54)0 -.190 .. R0ot0 .0011 .123"0 .31417
VIA10.5 .1064 .4034 .184,1 .50199 .1076 05 090 .1se)00 :0610) .0330
Mfuel:5 :.1144, .01150 .010 .4014 .101 .44 .1900 300441 5323
A6101U5 .0309 .3079 -. 001) .0 9 - .6066? -. 26 *3 3 .41990 -.4901 -.54244

99410.5 - --- 090 *055 .00 .010 054 t al -. 047 .01 .11015 __.33)00
91101 -0560 -. 04.9 -. 0)90)l -. 18601 -.5306? 395991 .00)9? .1910) .10040

2.4%6.118 -;i6 36 -io01M .10)0 - .00141 .01400 -.0218 .4104 -.41641s .031

0610.30 3.00000 11 .97 01* 011 .684 tl" .107 .19
pIlU~meI -. 010) 10000 .061*4 .0090 .410057 .1341 .10261 06051 .146

It~~~luhli63 -. 39190 .140 .4? .9
91.4TRI .094 .10314 .30001 .0)319 .600089 __.0940_____44014 _________________

1:1 29 -069 .063 -. 00210 -. 1091 -.12161 .10209 1301 "0000114
9300.3us0)1 .505 .0420 .030701 .013 .0011609 1.00

90070.19 11 -. 5430 .111 .4705)11 .39901I .45U49 .10300l -.404050 .01005l -.01104
93010.50, -. 010*) 5)5 .00 .)9? .9 000 -. 00 00? .34

IETIWI9445FU09T -~~~.0001 - -.-- 50 .0)0 ~ 50UfhYWr
91F15 .0940 .00*10 -.001 1.0099 .1) 339 000 .334 41

lIAIURlI - 149 .401 .16041 -. 591 -.310)9 -.0)10-- 6 0? 31r.19

FIAlUR16 . 1 .09 -.1116958 -.09676 -.01219 -. 111 1.3000 .39 .0
PGA01355.799 0 .063..01061 -.01996 -.0404 -. 056)1 .9013 1.000f" U1
10010.59 __ .S1910 -. 134*5 -. 0)41 -.15966 -.18104, -.321956 .09 .000 .00

90410.59 -. 0109 -.10901 .0004 -.03641 -.911*3 .40659 .031 -. 1035 -.0900

900?u019 ------- 0 -1.53 .93055V 90.18650 -. 401.4 9601.50 00.50I ---- 9140.5
91110.19 1.0000.06 .69S .29 195 180 .609 .66- .67

plal 0ess .199 -. 5013. 1906000 .177 -803 10 .330 .2
.000 .16117 -. 301035 3.00000 1910 611

90010.54s -. 0101 -___.06300 .3)0 -.0il9s -. 33406 .008000SI 4esS .91
9010.59t -.3002 .9140 -. 3z90 .3200 .1101 .1084 1.00000 . 04 .- 5112
TEA TUN 0k!L.i05O..... 0000 -.01504 -. 44066 .*lost isiN ,44A094
PITU2 .80 .1512 -. 03300 -.31004 -. 0009 - -. 3404 -.*also .006 .0616
96010.59 .0791 -. 001 -. 0054? -.00)03 -.90)11 .00000 .000051 -.04003 -.90S0

14unt 1.00?VI00 0 ? . 9 -

901105 1.01411100 00

RV zs ill 9) -.19716 - - -

FGAUE 7 .05 ANALYSIS OF89 HAND96 EMTYFETRSUSN IHI-RUS ORLTINMTI

VSAT@Ri -.2-148 .8280 .419 -. 6 .119 40 0

produced, we do not believe that the data processing would be limiting.

However, if line processing takes longer than scanning, multiple proces-

sors could be used with parallel multiple lines of processing working

concurrently to process more than one line at a time. The need for

multiple processing has not been assessed, since all work has been per-

formed on a multi-user system with relatively slow development-type pro-

grams. However, because our software could be supported by multiple

processors working in parallel, process time should not be rate-limiting.

Since the potential of this technique has been shown to be good,

the next task is to refine the technique. Refinements can be made in

all areas, including fine-tuning feature extraction, adding new features

and removing the less significant ones, and developing methods for making

authentication decisions based on these data. In addition, studies

could be made of methods for optimizing the software for minimum through-

put time.

17

VI COMPUTER PROGRAM SUMMARIES

The task of image analysis has been broken down into four discrete

jobs:

* Determine the correct gray level for image thresholding using

the FORTRAN program HIST.

* Threshold the image to produce a binary image using the FORTRAN

program THRESH.

" Extract a list of hand-perimeter points from the binary image

using the PASCAL program LINEBYLINE.

" Extract the feature values from the perimeter list using the
FORTRAN program SCAN.

Each of these jobs is handled by a single independent program. A brief

description of each program follows, and listings of each program appear

in Appendix A. The program LINEBYLINE is quite complex, however, and

Appendix B is included to describe its operation in detail.

A. HIST

This FORTRAN program computes a histogram of the frequency of occur-

rence of gray levels in an 8-bit gray-scale image. The program is capable

of handling a 512 x 512 pixel image, which is the size used to represent

the hand data. The image format is two pixels per 16-bit word. The record

size on a DEC RK 05 disk is 256 16-bit words. The output file lists the

frequency count of each gray level (0-255). A plot of the output can also

be produced on a TEKTRONIX 4000-series terminal, using the PLOT 10

(TEKTRONIX) software interface installed in the Bioengineering Research

Center's PDP 11/40 computer. The output of this program clearly 'identi-

fies the sets of gray levels that represent either the background or

the hand; this information is used to pick a discrete gray level between

the two sets of levels that will best separate them. This level is used

by THRESH to produce a binary image.

19 PASSAWz-Wo

B. THRESH

This FORTRAN program thresholds an 8-bit gray-level image to produce

a binary image. Thresholding is performed on a pixel-by-pixel basis.

The input file contains two 8-bit pixels per word with a total image size

of 262,144 pixels. The output file contains 16 one-bit pixels per word.

Both input and output files have 256 words per record. The discrete

threshold value is entered at run time.

C. LINEBYLINE

This PASCAL program produces a list of perimeter points that bound

"blobs" of color opposite to that of the background in a binary image.

Eight-point connectivity is checked for each point in the image. Using

the large area as a criterion, the hand blob is selected from others,

and only the hand perimeter is saved. This list of hand-perimeter points

is output as a file of ordered points running around the perimeter of the

hand. Only one pass is made through the image, and only one line is

accessed at a time. The program therefore requires only slightly more

dynamic memory than is required to store perimeter points. A more exten-

sive description of this program is included as Appendix B.

D. SCAN

This FORTRAN program processes the list of perimeter points produced

by LINEBYLINE and outputs numeric values that describe geometric features

of the hand, as discussed earlier in this report. Included below are

comments intended to help the reader interpret the program listing in

Appendix A.

" The preferential landmarks on a perimeter are the fingertips.
These are located by the angle algorithm on page A-20,
starting with the comment lines. Landmarks are found by
moving a window of size IDIS (18 points) along the perimeter
and looking for an angle criterion shift of 90 in the tangent
to the perimeter.

* Starting at line 174 on page A-5, calculations of finger length
are made. These require the precise tip locations calculated
earlier on page A-4, starting with the comment lines in the
middle of the page.

20

4r J7 .

" Finger widths are calculated with the code on page A-21.

" Ratios of finger lengths to widths are calculated on page A-22.

" Curvature measures are calculated with the code in the middle
of page A-22, using subroutines TANAG and LINFIT that process
angle-function data.

• Hand width, perimeter, and hand area are calculated at the bottom
of page A-22, using the functions IDELTS and DSTNCE and the sub-
routine ARPRIM.

21

I

Appendix A

COMPUTER PROGRAM LISTINGS

A-i

PROM" MIST
C
C
C WUITTEr BY GREG NYERS
C
C THIS ROUTINE COMPUTES A HISTOGRAM OF LA 8-BIT (DEV-LEV. IMAR.. IT
C HANDLS IMAGES THAT ARE 256, 512 01 Ie24 POINTS/LINE. THE IMEA FORMAT IS
C 2 PIXELS PER WOBO, AND THE RECibSIZE ON DISK IS 256 16-BIT WOBDS.
C THE OUTPUT FILE LISTS THE FREQIECY COUNT (W EACH GEY LEVE. (-2SS).
C
C NOTE: FOR 256 X 256 PILES, THERE IS ONLY ONE PIXEL PER WWOI
CC

LOGICALI! NULL. NAINc38), NAMOUT(30), A(512), ITITLE(72)
INTEGE'4 H4256), IHAKEA
REAL G(256) B(256) XAXISiIS) YAXIS2). TITLE(Igt
INTEGER STjaNL. STATP, iEIDL, iEQUIVALENCE (ITITLETITLE)

DATA XAX|StI)/'REY/ 1XAXIS42)/' LEV'/,XA"ISI3)/'
1
.1 E /I VAKISII)d'COUN'/,YAXISI2)/'T '/

C
C

iL.N" -
3
4

NULL " 9
C

DO I 1 0 4.18
TITLEdl) - 4H1

1 XAXIS(Il a 411
C --- %T DATA FROM TENEAL
C

WRITE (5,10)
Is FORMATI' FOR INPUT FILE: TYPE OLINES, #POINTS/LINE, AND FIL3IANE

READ t5.15) ML NP, NCHIN, NMNIIININ
Is FORAT2,Q,3011)

NAMINU4CHIN.I) - NULL
OWINUNIT-LININ NANE-NANINTYPE.'OLD', -Al~*DIRECT' ,READONfLY,

I RECORIZE. 128,ERI.901)
C

WIRITE (5,20)
20 FORMATI' FOR HISTOGRAM AREA: TYPE STARTING LINE, STARTING POINT. 0

ILINIS, #POINTS/LtHE')
READ (5,2S) STARTL. START?, NL. VP

25 FORMAT(415)
ENDL - STARTL - III - I
ENDP wSTART? t M? - I

C
C

WiRITE (,0
30 FORMATQ TYPE "I" IF YOU iANT A HISTOGRAM OUTPUT FILL' ONLY.'/

1 ::'2'' IF YOU WANT A PLTOLY.'/
2 ' '3'' IF YOU WANT BOTH')

READ (5,35) MPW
35 FORMAT(II)

IF fISW? -EQ. I O0R. ISM? . EQ. 3) WNITE (5,40)
40 FORMAT4' TYPE HISTOGRAM OUTPUT FILE')

IF (ISUP .EQ. I .02. ISIIP .EQ. 3)
1 READ (5,4S) NCOUT,(AMOUT(I),II.NCIOVT)

45 FORMAT(Q,30AI)

NAMOUT (NOIOUT*11 a NULL
IF (ISV? .EQ. 2 .0R. ISV? .EQ. 3) VUITEIS 50)

so FORMAT(' TYPE 0 OF GREY LEVELS DEIED IN fHE PLOT (13)')
IF (ISW? EQ. 2 .OR. ISWP .EQ. 3) READ5,S55 NORMY

55 FOBEATI 13)
C
C
C
C
C
C
C --- INITIALIZE HISTOGRAM A RRA Y
C

TIE - SONDS(o.l
DO 100 I1 1,256

C
C
C
C
C

IF (NP .E.S2 OT 8
If (NP. Q 256) O TO 400
00 TO 902

C
C
C---FOB 1024 POINTS/LINE (2 ROCORDS PER LINE)
C

A-2

380 DO 210 JD * (STADTL-00)*1 (OK6-1102#1 2
8 IF MPJDW 6) . . 1) WITE (5,212) JIV

D 212 FORNATI J& - '.14)
IF (START? AT. 512) 00 TO 2N0
WEAD ILUNIN'JDEC.ERit.903) IAII),1.I.S32)
%I - START?
K2 s MINOIENOF 512)
CALL HISTLA.1I,12,IU)

220 CONITINUIE
IF (ENDP .E. 512) 00 TO 210
DWAD ILININJDBC.).UD.904) fA(I),IsI.SI2)
XI - MAXO(STAITP.S13 - 512
12 - -NP- S512
CALL HISTL(A,1I .2.19)

230 CONTINUE

C --- FOR 512 POINTS/LINEC (ONE LINE PER WC001)

360 DO 330 JWCX - SIARTL.EDL
READ (LINWJREC ERR.903) (A(t).1I.512)
CALL. H1STL(A,sr~ffPEmoI.IH

330 CON? I NUE00 TO 500
C
C
C --- FOR 256 POINTS/LINE (2 LINVRCOD)
C

400 DO 430 JUEC - STARTL,FJIDL
READ (L3NN'JRC,ERN903) (A(I),I.I,532)

C --- 0O1PiESS DATA IN ARRAT A FROW DEAM2A FORMAT
DO 413 1 - 1.2%6

411 Ail) - A421-10
CALL NIs7LiA,SrADTP.EMDP. I#)

410 CONTINUE
C
C
C
C
C --- PRODUCE OUTPUT FILE IN A FORMAT ACCEPTABLE TO THE PROGRAM PLOTOATA
C
560 CONTINUE

TINE - SOCK05TIM?
W~RITE (S,501) TINE

Sol FORNATE' TIDE - ',VJO.3.' SECON1SI)
CLOSE (UNIT.LUNIN)
D OS Im 10 1,256

(1) (1
as5 CONTINUE'

C
If (ISl? -N3. 1 .4(. ISW .NE. 3) OD) TO 660
OPEN QINIT-LUWOII,X NE.NMIOV.TYPE- NEII' ACES ISEUEJT IAL',

I FORX.'ONATD 'ED95CRRAkNR LLIST')

WHITE (4,510) (NANINtI) 1I.1 27) STARTLSTARTP.NL.NP
SIG FORIIAT(X 'HISTOGRAMNOF 1 1,415)

N256 - 25k
WRITE (4,520) MM5.(GIUI)I.26

520 FORNAT(14 /.2(E35.0.2X)
IHAIIEA - 6
DO 530 1 - 1 256

sm IHAMEA v IIhA # 18(f)
WRITE (4.S40) INAREA

5* FORMAT1/. HISTOGRAM AREA - ',17)
CLOSE 4UNIT.LUNOIJT)

C
C
C --- PLOT THE DATA ON THE TEKTRONIX
C
6ee CONTINUE

IF (ISU? .T. 2) GD TO 999
ENCODE (67 530 ITITLE Meg.) (NAN().I.I,27)SATLSTATPNL,NP

C CALL rimW.kiGEIL.*AXIS. TAXIS. TITLE)

999 ST0?
C
C
C

91 WRITE 5,1)(NAIN(I) I-1 NCUIN)
931 FORMAT H 11ST ERROR 0F6N64 INPUT FILE ',300

GO TO 999
M WRITE (5,912)
932 FORNAT(' HIST ERRON: 9 POINTS/LINE 256. 512. ON 1024 ONLY?')

CLOSE IJNITUNIN)
GO TO 999

93 WHITE (5,913)
913 FORNATI' HIS? ERROR: ERROR 903 READING INPUT PILE')

CLOSE (UNITLUNIN)

GO TO 999

- . ug ,I

964 WRITE (5,9114)
914 FORMATI IST ERROR:. ERROR 984 READING INPUT FILLE')

CLOISE (UNIT.LUN IN)
GO TO 9

985 WRITE (S. 91 5) (NANMf(11,1.1 NCR=II)
915 FOIMATV MIST : ERROR CREATIN6i OUTPUT FILE '.38*1)

GI) TO 999
9 WRITE (S 916) (ITITLE(1).I'I,72)
916 FORISATi)

PAUSE 916
00 TO On9

END
sVDROUIMIE IIISWLA,k, 2,111)

C
LOGICA4.1 A(512)

CINTWfl3E4 1114256)
C

DO 10081 a KI.K2
IN'! - A41)

IF (INT .LT. 6) INT *IN? 25
INDX - IN! # I
IF (IN(INDX) EQ. 3276) GO TO 160

168 CONTINUE I(NX I(M
C
C
999 RETURN

END
C
C

PROGANI ?HRE
C
C WRITTEN By amE EVERS
C
C
C TUIS P"ORA T RIOMI AN 9-51T (E-LEVEL IME AND PROSUM A SINARY

C 1BIT V JN~OT1T IME. THE INPUT FILE CONTAINS I 8-lIT PIXEL
C PER WORD IF THE')%"AG IS IN THlE 256 X 256 DE ANZA FORMAT. 0flIDWIZE,
C THE IMAGE3 CONTAINS 2 PIXELS PER WORD. THE OUTPUT FILE CONTAINS
C 16 I-B1T PIXELS PER WORD. BOTH THE INPUT AND OUTPUT FILES HAVE
C 256 WORDS PER RVXX)RD.
C
C
C MODIFIED 9/24/80 TO ACCEPT COMMAND STRING INPUT
C COMMAND SY(NTAX IS-.
C IOUTFIL.INFIL/LN1:0:0/1 N:0
C ROB HANNON
C

LOGICAL0I NMULL, LFLGI,NANFIL(34) ,A(6 192),9(512)
INTEGER02 IDYTE
LOG ICAL* I BYTE
INTEGER IFLO NL,KP ITM EXSTAT
INTEGER svWAA) ,TAAL m LAL(5)

RE.Al PROMPT
DATA PRONPT/'THR'/, IEXT/3REX/.EXSTAT/1/
DATA ML/-I/.NP/-I/ ITHR/-I/
EQUIVALENCE (BYTE, IYTE)

CDATA LUNIN/3/. LlJNOIIT/4/. NLL'W
C
C
C --- GET DATA FROM TERNMINAL
C
C WRITE (5.10)
C Is FORNAT4' FOR INPUT FILE: TYI' NLIS IPOINTS/LINE. AND FILENAME')
C READ (S IS) ML, NP, NCHIN, INANI6,I,NIE)
C IS FORNAT(UIS,Q,30AI)
C NANIN(NCIIN.I) - NULL
C
C Initiative GETCUD ad swlitch desriptor tsables

CALL ASSIGN (g,'TI'' 3) fAsuiss LUM for G~rCMD
CALL INICAD (6 IEXT ROWPT) fSet LUtE ad file extpreup
CALL CSISW ESiEAli).':LN',2, LNVAL) 9Deelere /LN .1lIsht
CALL CSISW (SVIAl 15). TSP, 1. THVAL) IDeolare /TH switch
CALL CSISV iLNVAL4II, D INL) tDoolare first vat for /LN:0
CALL CSISV (LNVAL,3),'D',N?) fSecond Volvo
CALL CSISV (THVAL(I).'-D-,ITO) tDeclare va1 for /IH:*

A-4

C
C Got omnasd string &ad process it

to CALL cO1CN (B. LuG)
IF (LPLO ME 8 OTo Iwo6 tE'r

EXST*T - I tSOt auecogaful
CALL CII(.,..IFL(I) lCompresm string

IF(IFWa .13. a) 00 To IM2 tError
IF4IFLG .EQ. 0) LFILO * 'I' I EqeaI sis string
171 IFLG .L0. 0) LPLG - '0' tmo :q al site

CALL CIDEFLFLGI He !Sot default Olt
ML *-I IS~t for check
UP . -

CALL CS2tLO MPIL. TfA) ?Pars* string
IP(MAILWl 'E0. 0)'660 TO 1046 !Error
I F ', L .E. -1) .03, INP EQ. -1)) 00 To 1930 'Error
IF(ITIII EQ. -1) 00 TO to36 fError

OFEN(UlNIT-LVNIN MAE-ANFIL,TYPE.'OLD' .ACCSS'DIREWT' .REAZINLY,
C I RECORDSIZE. I2S.ERR.996n

C
TOTPIX - FL.OAT(ML) * MP
MRECIN - TOTPIX / 512
MILOIU - TOT? IX / 4696
LIMC - I
KTOT a 8
IF (111 .ME. 256 .0R. NP .11E. 256) 00 To is
NRECIN - MRECIM 0 2
LINC - 2
KTOT a 16

I8 CONTINUE
C
C Got latformation and open output file

IF (LFLG -EQ. 'I.) GO TO 50 (Equal sign is string
NAMFIL(2S) - III ;Set default extessiom
MANFIL(26) -
NAIL27) - 'N'1
00 TO 60

5o CAILL CSIDEF('O',,,NAMFIL(IS),'BIM') fSet doeaut arl
CALL CS120''.11AMFIL) !Parse string
IPIFMPILIl) .EQ. 6) 00OTO 1640

C WRITE (S.20)
C 20 FORNAT4' TYPE THRESH"L AND MANE FOR BINARY OUTPUT FILE-)
C READ (S,25) ITIIR.MCHOU,MNANOUTWl,I1,NCHOUT)
C 25 FORNATI14.Q,3Ah)
C NMOITMNCIOtIT.I - NULL
so OPENIJNIT*LUNOUT.NME-NANFIL TYPE-'MEI ACCM.. 'DIRWr',

C I RtECODSIZE- 128 ,ERR.902, INlitALSIZE-NBLOT)
C
C
C

TIN4 - SBNDS(G.)
30 DO J - I,MRECIN.KTOT

C --- READ IN 4696 6-BIT PIXELS
C

DO 2006K - IXTOT
KOFF - (K-I)O512

200 ONTNUEREAD ILUNI'.K-1) (AKOFF*I) ,I.1,512)
26 ONIU

C
LOP? - I
DO 360 L - I S12

IsYT 0
C
C ------------------ PERFORM THlE THRSH"L IN GROUPS OF B PIXELS
C

DO 466I 1,

LOFF - LOP? LIMC
IF (INT.T. 0 INT -INT 256
ibgtesm iahtt(ibyte.-l)

456~~~ ocl .i tit .0. thrl ibyte *ior(lbyto,I20)

399 cotingsbl) - byte

---- rlto cut one record of data (4096 blery pixbs)

CLOS e (tlUNIe LN

CLOSE iUNIT a LUNOUT)
TIME - SECND6(TIN)
WRITE (5,991) TINE

991 FORMATI TINE a 'P19.3)

A-5

I4.

0

999 00 TO IS lost Solt eomand

91 writ. 45,911) (NAMFIL(i),I 34)

911 for1.t(' error opeui input file ',30al)
9 o to 999

902 write (5,912) (MANFIL(i),i-1,34)
912 forel(' error oresting outpvt file '.3801)

8o to 999
C
iee IF(LFLG .EQ. "366) CALL EXST(EKSTAT) lExit with states
I820 TYPE 1021
1821 FORMAT (' one comeand syntax error 000')

GO TO 900
2838 TYPE 1831
1031 FORMAT (' **0 error in isput filoupoo 0ee')

GO TO 9088
I840 TYPE 1841
1841 FORMAT (' o00 Error is output fileopeo eee)

GO TO 9068C
9f00 EXWTAT - 4 fSet for sever error
-- CALL RES Rset cud input to top level

GO TO to to90 nsut omeod

end

PROOAJ LINEBYLINE(TTY); (0NSPO)

(e VERSION 46C 2e8/Iv/

THIS VERSION PRODUCES A PERIMETER LIST Of ONE LARGE BLOB. WHICH IS SUPPOSED
TO BE A HAND. FOR ROB HAROWN AND THE PALMPRINT STUDY.

WRITTEN BY GREG MYERS
SRI INTERNATIONAL J-386
333 RAVENSWOOD AVENUE
MENLO PARK, CA. 94025

THIS ALGORITI IS TAKEN PROM A REPORT BY GERRY AGIN AT SRI ENTITLED
"INAGE PROCING ALGORITHMS FOR INDUSTNIAL VISION". THIS ALGORITHM
IS RE ERRED TO AS "CONNECTIVITY ANALYSIS". IT SEGlMENTS A BINARY
IMAGE INTO "BLOBS" (CONNECTED AREAS) OF THE SAME "COLOR" (GREY LEVEL).
ONLY ONE PASS IS MADE THROUGH THE IMAGE AND ONLY ONE LINE IS ACC
AT A TINE (HENCE THE PROGRAM NAME 'LINk-BY-LINE'). FEATURES OF EACH
BLOB ARE COPUTED, SUCH AS ITS AREA, CENTER OF GRAVITY, BOUNDING RECTANGI,
AND A LIST OF ITS PERIMETER POINTS.

THE LETERS 'NSP' WITHIN A COMMENT MEAN 'NOM-STANDARD PASCAL'.
THE LINES MARKED 'NSP' MAY REQUIRE MODIFICATION.

THE LETTERS 'ND' WITHIN A COMMENT MEU 'MACHINE-DEPENDENT'.
THIE LINES MAY ALSO REQUIRE MODIFICATION.

BECAUSE THE COMMAND 'DISPOSE' IS NOT IN THE "SWEDISI" VERSION OF PASCAL
AT SRI, 'DISPOSE' STATEMENTS ARE ENCLOSED IN COMMENT STATEMENTS AND
ARE IGNORED.

READ AND WRITE STATEIIENTS FROM THE USER'S TERMINAL 90 NOT REQUIRE
FILE SPECIFICATION IN THIS VERSION OF PASCAL. THE FILE 'TTY' IS
ASSUMED.

EOLN IS AT THE BEGINNING OF AN INPUT LINE WHIEN READING FROM THE TTY.
e)

CONST NPIXELSPERLINE - 512; (0 THIS PROGRAM HANDLES 512 X 512 IMAGO ONLY 0)
NLINES - 512;
NBITSPERCIIAR - 8; (eNMJ)
NCIIARSPRLINE - 4 (a * NPIXELSPERLINE / NBITSPERCIHAR I) (09DO)
NCHARPERBLOCK - 512; (e01)"
BKGND - 0; INK - I;

(e INPUT COMMANDS 0)

ON a 'T'; OFF . 'P';
LINEIN - 'L';
LISTBLOUS - IB''
LISTPERIIIS . 'pl.
LISTRUNLENOTBS - 'I'-
LISTACTIVELINESIMXUEMTS * 'A';
DIAGNOSTICS - 'D'-.
STOP • 'S';

A-6

TYPE BINARY a K(DID.. INK;
ausTYin aSET OF 'A .'Zl'

ARRAYSINT - ARRAYII.5 60ITGR

BLOWNR -fBLO)B I;
PlRPE3INSECION -tURI)M!lON;
PERINPTR - #PERIN;
BLOBS - RECIRD

COLOR: BINARY; I-
CORP: iNTEGER.
PERIN: PTRPERISECIOM;
NPERIMPTS: INTEGER*
AREA.XNEAN,YMEAN: AEAL;
XMIN.XNAX YNIN YNAX- INTEGER;
PARENT, NOXT: AL61BPTR END;

PERINSBCTION - RECORD
LEFT:RIGIIT: ?ERINP?R-
PREV.NEXT: PTRPERIiS*TION END;

PERIN - RECORD
LINE.COL: INTEGEM
NEXT: PERIMPTR END.

SEGM tSEONENT;
SEGNENT *RECORD

STARPYCOL, ENDCOL: INTEGEM
BLOB: BLOBPTR;
NEXT: SEOI'TR END;

PTRRUNLENUTU - tRUNLENGTHS;
RUNLENUTHS - RECORD

STARtTCOL, ENDMO: INTOGER;
NEXT: PTRRUNLENGTH END;

to GLOBAL VARIABLES 0)

VAR BLOB BLOBSDONE: SLOBPTR;
RECYHLEDPTR: PER IMPTR;
ARRAYP: ARRAYII. .111 OP PERINPTR'
ACT IVEL IKE, PREVSEG,CURRSG, SEG: §GPTR;
NEULINE, NEliS0G *LASTNESIJ: PTRRUNLENQTH;
CND.ONOPF: CHAR;
CND;ET : CNDTYPE;,
INTERACTIVE: BOOLE.AN;
LINENUM COL NEWCOKPNIUMNLREAD NTIJ103: INTEGER-
TRACEU0IS tACEPER INS TRACEAb IVELIKIEGUENT ,TRACEJRUNLENMflI: CHAR;
TRACED IAGNST ICS: CHAR-
INPITINAGEDATAFILEPEAiNFILE: TEXTf;
INPMTANEDATANANE.PEIIINNANE: ARRAY II. .381 OP CHAR; (ow)
BIT: ARRAY[I..NPIXELSPERLINE) OF BINARY;
1,CHARTOT.LINEGROUP: INTEGER;
TYPELI MENUMS: BOOLEAN;
HANDONLY ,BLOBWR ITTEMN: BOOLEAN; AREATW: REAL; IAREATI: INTEGER;
TRACEPARENT, RECURS: BOOLEAN;
NSKIP: INTEGER;

(*01. NE PAGE 0)
PROCEDURE PAUSE;

VAR DUMNYCHAR; CHAR;
BEGIN

WIRITELN('TYPE ANY CHARACTER TO CONTINUE');
READLN;
READS D4NRYCHAR)

END; (0 PAUSE 0)

PUOCEDURE TYPEUNLENGTIIS;

:AJDLTRt PMK GH;

END; (0 TTPE3UNLENGTHS 0)

PROIWR TYPEACT IVLINSWITSt

VAR ALsMl: S1017;
BEGIN
END; (0 TYPEACTIVIMSIIUIYS *)

A-7

(00W. KN PAGE *I
PROEDUE WRUTL"ALO(VAR DEVICE: TEXT; VAR SLOB: KWST);.

END; to VRlTEBLOS 0)

I'MCEURE TYPEBLONS(VAR DEVICE :TDTf);

VAR AISPTR: SEMIR;

END; 1e TYPEDLB 0)
to*? NEV PAGE 0)
PROCEDURE DIRPOINM(AR DIRXI,YI,12,T2: INTEGER);

to DIRECTIONS:

x
I

V-91 3 2 I

CASE DIR OF
3,1: Y2 :*TI-1;
4.0 Y2 Y!;
S.2.7: Y2 *I. END;

CASE DiR OF
3.4,5: X(2 : I-1;
2.6 : X2 :~Xi;
0.1.7: 1(2 X*1+11 END;

END; to DIRPOINT 6)

PROCIEDURe UNPACKS(VAR XX: INTEGE; VAN DIR: ARRAYSINT);

B1 ,XXDIV4096XIVI.XDIV64XDIVS.
INTEGER;

X : -XX;
XDiV496 : X DIV 4096;
XDIVSI2 :*X DIV 512;
XDIV64 X* DIV 64;
ND! VS :*X DIV 0.

D R12I : XDIVS - XDIVA*&
DIR(3 : XDIV64 - XDIVS1204-
0D11I4I XDIVS12 - XDIV409M4
DIRIS) X D1V4096;

END; to UNPACKS 0)

(*0P* NEW PAGE 0)
PROCEDURE UNFACKPEIS(VAX PTR. UPTRR, VPTR: PERJNTR1),

VAR DIR: ARRAYSINT;
1,11: INTEGIER;

BEGIN
ARRAVIPIII.LiNE : PTRI.LINE;
ARRAYPII~t.COL :.PTRf.COL - NPIXEISPERLINE;

UNPACK5(PTR9 .NEXt*.LINE,DIR);

FOR I :*I TO 5 DO SEGIN

DIRPOIN(T'DI*(fl ARRAYP(Ilt.COL,ARRATP~llt.LINE.ARRATPIIIt.COL,ARAIJI~t.LJU);
END; to FOR 0)

UNPACKSIPTRt.NFXTt COL DIR)-
IF TRACED I AANT k* 6N W&d FOR I :- I TO 5 DO VRITPL(DIII):4);

FOR I1: 6 TO 10 DO BEGIN

D IRPOINT(DIAI (I-51 ARlAYP I I I .COL. ARRAYP I IIt. LINE. ARRAYP (I I' .COLARRAYP (1119.LINE)
EN D; (1 FOR 4)

UPPTR ARRAYPIII;
UPPTRL se RRAYPI1II;

END; to UNACIPEN 6)

(oW. NEW PAGE 0)
rUNCTION (XJOECTED(VAR POINTZ .POINT2: PERIEPYR): BOOLEAN;

A-8

swim
IF EABSPOITI.LINt-POINT2i.LINE) <- 1) AND

(ASS(POINTit.COL -POINT2t COL 1 -) THEN CONNECTED TRUE
ELSE CONNECTED :- FALSE;

END;

PROCEDURE VRITWPOINTS(VAR DEVICE: TEXT;
VAR RI(RIT,LEFT: PERIMPTE

VAR PTR .PTR2,UPPTRRUPPTRL: PERIMPTI;,
BEGIN
(0 IF tTRACEDIAGOITICS -ON) AND RECURS THEN BEGIN

11RITELN(RECIJRSsTRUE');
PTR2 :- RIGHT;
WHILE PT32 (> LEFT DO BEGIN

WRITELN(PTR2' .LINE:4,PTR2t .CDL:4);
PTR2 :- PTR2#.NEXT- END-

WRITELN(PTR2t.LINE:4.*TRt2t.c6L:4); END; 0)
P11 :- RIGHTf;
WITH1 PTRI DO WRITELN(DEVICE.LINE:4, ' ,(XL:4);
WHILE PTR <> LEFT DO BEGIN

IF PTRt.NEXT9.COL) NPIKELSPERLINE THEM BEGIN
IF RECUS THEN BEGIN WRITELNC'2R0 RECURSION'); PAUSE END;
UNPACKI'ERIMS(PTRI .NEXTUPPTRR.UPPTRL);

(6 IF TRACEDIAGNOSTICS - ON THEN IRITELNtIIRITEPOINTS -- A');
IF TRACEDIAGNOSTICS - ON THEN

RECURS :-TRUE; 6)
S0 PTR2 :- UPPTRR;

WHILE PTR2 <) IIPPTRL DO BEGIN
IRITELNIDEVICE,PTR2t.LINE:4,PTR29.COL:4);
PTRZ :- PTR2t.NEXT; END;

IIRITFLN(DEVICE.PTR2t .LINE:4.PTR2' .CDL:4); 0)
IRITPOINTSDELVIcE,UPPTRR.UPPTRL NPERINPTS)-

(0 IF TRACEDIAC'NGSTICS - ON THEN WRiTELNt'WRITi'OINTS -- III);
IF TRACEDIAGNOSTICS - ON THEN RECURS :- FALSE; 0)
PTR :- PTRt.NEXTt.NEXT; END

ELSE BEGIN
i* IF NOT CONFCTD(PTR,PTRt.NEIXT) THEN BEGIN

IRITELN'POINTS NOT CONNFCTED*)*
IINITELNIDFVICE.'POINTS NOT CONAMFD'); PAUSE; END; O)

(0 SKIP UNNECSSARY PERIMETER POINTS *)
IF (PTRt.NEXT ()' LEFT) AND CONNECTED(PTR,PTRt.NEXTt.NEXT)

THEN PTR :- PRt.NEXT;
PmR :- PTRt.NEXT;
NPERINPTS :- NPERIXPTS + I;
0IF TRACEDIAGNOSTIS - ON THEN

WI1TH PTRI DO NRITELN(LINE:4,' 1,COL:4); 0)

WI1TH PT~t DO IRITELN(DEVICE.LINE:4,' ',CGL:4);
END; (0 ELSE 0)

END; (* WHIILE &iI
END; (0 WUITEPOINTS ')

(9** HEW PAGE *)
PROCEDURE WRITEPERINS(VAR DEVICE: TEXT; VAR BLOB: KBOPTI);

VAR PS711: PYRPERINSECT ION;
BOUlN

WI1TH BLOBt DO
IF PERIN <> NIL THEN BEGIN

NPLRIXPTS :- 0;
IF NOT RANDOMLY THIEM WRITELN(MEICE. ').
IF NOT HANDONLY THEN 1RITELN(DEV ICE,'BLOA COMMOENT 9 '.CONP:4);.
PSPT1 ;- PERIMS;
REPEAT

IF NOT HANDOELY THEN IRITELMIDEVJCE',;
IF NOT HANDONLY THEN VRITELN(DEVICE 'LINE COL.).
WI1TH PST31 DO itRITEPOINTS 4DEV ICE.RItIGHT, LEFT, ,NPi*INP);
PS713 :- PSPTRt.NEXT

UNTIL PSPTR - PERIN;
END (0 IF*)

END; (s WRITEPERINS 0)

PROCEDJURE TYPEPERIMS(VAR DEVICE:TEX'T);,

VAN AISPTR: SEGPTR;
sEwim

WRITEL(DEVICE.' '
WR ITELN(DEV ICE. 'BLG4 PERIMETERS');
ALS - ACTIVELINE-
WHILE AiSPiT (> NIL SWBEIN

WRITEPEINS4DEVE ICE,ALSPTRI .3LOS);
AISPTR :- ALSPTR' .NEXT END;

END; (0 TYPEPERINS *)

.A-

* -~ C. - 4 .MillS

(OIp. ND PAGE)
PIOCEDIN£ NEWWIVAR NEWINM:TN PERIiINR) (* e

)

o THIS IMrINC IS N ONLY IF THE CONINlD 'DISPOSE' IS NOT AVAILABLE
IN THIS VENSION OF PASCAL e)

EIN
IF RECCLDPTl NIL TIE BGIN

NEVPOINTER l R,, YCLED .R 1
RECVCLk.NiTR :R RECYCLEDPTiN
NEWPOINTENI. NEX :- NIL

ELSE NEFwMEWOINTER);
END; (e NEW 0)

PROCEDURE DLEPEIIS(VAR RIOHT.LD'T: PERIPTR?;

VAR POINT: PERIIfTR;

(ADD THE LIST OF PERIMETER POINTS OF THE BLOB TO THE LIST OF
RECYLED PER INETER POINTS. THIS SBCIION OF COE SHOULD
BE USED IF THE COIIAND 'DISPOSE' IS NOT IMPLEIENTED IN THIS VRSION
OF PASCAL 0)

LEFt.INEXT :- RECYCLEDPTRI;
RECCLEDPTR : RIGHT;

t* DISPOSE OF PERINETER POINTS AND PERIMETER SIXTION. THIS SECTION OF (DE
CAN BE USED ONLY IF THE COMMAND 'DISPOSE' IS IMPLEENTED. *)

t* WHILE RIGHT () LEFT DO SBIN
POINT : RIGHT;
RIQIT :

e RIGIT.NENT;
DISPOSE(POINT) END;

DIS]m(1ERIGwT) o)

END; to DELETEPERIMS 4)

(**P* NEW PAGE o)
FUNCI TION DIRETION(VAR XI,TIX2,Y2: INTHR)- INTR;

(o DIRECTIONS:

-I 8 1

-I 3 2 11 0 4 .
I 5 6 7 0)

VAR DELTA?: ITEGR;

DELTA? :Y 12 - ¥1;
CASE X2 - XI OF

- I: CASE DELTAY OF
-I: DIRECTION :* 3;
0: DIRECTION : 4;
1: DIRECTION -S END;

0: CASE DELTA? OF
-I: DIRECTION : ;

I: DIRECTION -6 END;

I: CASE DELTAY OF
-1: DIRECTION : I;
0: DIRECTION : ;
1: DIRECTION "-_ END

END- to CASE DELTA? *)
END; (DIlETION)

4o9* P NEW PA. 0)
PROCEDUIRE CONPACTPOINTS(VAR PTR.PTRB: PERIMPTR; VAR 1: INTEGER);
j PtEVLINE,PREV(L.PO~iTIONq,DIR NTEER;

WIT1 PItt DO noBIN
IF I - 0 THEN BBIN

PT3B.LINS :9 0
PIRIt.COL s9 0;
PTRD9.NEXT :- NIL END

ELSE IF I (6 THEN BIN
IF I - I THEN POSITION t I ELSE POSITION to POSITION III
PRt.LINE ". PTRt.LINE - POSITION * DIRECTION(P EVO2,PRZVINE,OX.,LIlE);END

A-10

'. - ' -' - :t k -L - ,
.i t e- #z '

IF I a S TEM POSITION to I ELS POSITION :a POSITION *0:
P133900I tC : PTRBt.COL - POSITION 0 DIRETION (PNEVCOL.PREWLlNE.COL, LINE);

PwREYIM : LINE;
PEEVC01,: COL.

noD; (a WITE 0)
M.; 40 COIJACTPoINTS 6)

few* NEW PAM 0)
PDOCEURE PIPI(VA PERINt flPERINSTIONI;

VAR fTIR P~TA PYRD: PEUIMPTI;
FIR*ObaOI~POFS BOOLEAN; (a NOT Ilm RhUIT NOW 0)
NPE2INPTS I: INTEGER;

P73E: PEDI~t.3lGNW
I ..
r I iTTi0IPOF1e -- TRUE-
IF VTR <) PERIM'.LEFT +HEM

REPEAT BMIM
IF (PTRt.LIME (LINDUU-1) AND (71t.01)C 9)

IF -THM BGIN AND (flRt.COL <- MPIRH.SPERLINE) TME SWIM
PTRA :- PTE;
NEWPTRS) EDD

COHPACTPO I TS ('ll, P*, I);

IF' I * 1'i UB SWIll
(0 TO IDETIFY TWAT COUACrED RECRDS FOLLOW 6)
PTRAt.COL :- PTRAt.COL. # NPIXEISPERLIKE;

(* INSERT COMPACTED PERIMETER RECORD INTO TUE LIST 0)
PIRt.NEXT :- PTRt.MECT;
DELETEPERINS(PTRAt .NLXT.PTI);
PTRAI.NEXI -- FIRBS;
PTR :PTRB;

END; (a IF I - 1I O)
END (0 IF 3 CONDITIONS THEM 0)

ELSE IF I > 0 THEN BEGIN

Is AN INCOMPLETE COMPACTION OCCIJRED -RESET VARABLES*
I :. 0.
PIJLXYGROVPOFJ9 :- TRUE;
DEIXTEPER INS (PTR3, PTRB) END;

PT2to :*PRf.NEXI-
END toREPEATr Eimw a)

UINTIL P~T - PERIMI.LEDTt
WID; 4*PIPERIEI 4)

PROCEDURE PACKPERIMU;

VAR MPERIXPTS: INTEGE;
BEGIN

SEG :- ACTIVELIME;
WHILE SEG ') N IL DO BEGIN

WITH SE~t.BLWD$ DO
IF PERIN <) NIL TUEN BEGIM

PXPERIMS(PERIN)
PERIN :- PERI::N$.E END;

SEW :- SE' .MEXT ED;
END; (* PACKPERINS 0)

4 asp# NEW PAGE *)
FUNCTION ENDOFBLOCK: ECOLEAR;

SWIM
IF CHARMO NOIAXPERBLOCK TIIEN SWIM

CHARTM :* 0
ENDOFBLOCK :-' TRUE END

ELSE EMDOr3LOCI :- FALSE;

CHARMO :- CHARIO # 1;
END; (e EMDOPSLOCI(0)

PEOCIURI GEFLINE&

(0 0 A LINE OF BINART 1UAU DATA FROM AN INPU PILE. *

VAN INPI0VUTE EOI: CHAR-
IIN

sA-im

(0 READ IN ONE LINE OF DATA FROM THE INPUT FILE 0)

(o UNPACK THE BINARY DATA- IT IS A%-UNE THAT THE DATA IS INTERPRETED ASF
ND .;A SERIES OF 9-BIT CHARACTERS 0)

FOR I I- TO NCIIARSPERLINE DO BEGIN
IF ENDOFBLOCK THEN RE-AD(INPUTIMAGE,EOSL);. (ONDO)
READ(INPUTIMAGE. INPUTBYTE);
BITS :=ORDIINPUTBYTE);
FOR J ;.I TO NBITSPERCHAR DO BEGIN

INDX :- INDX - 1;
IF ODDIUITS) THEN BIT(INDI: INK

ELSE DITtINDXI :* KGND;
BITS :- BITS DIV 2;
END.

END;
END; (0 GETLINE 01
PROCEDURE SETLINE;,

(a SET UP STARTING RIINLENGTU RBCRD *)

BEGIN
If LINENUM - I THEN BEGIN

MEW(NEWLINE);
NLl(LINEf.NEX : NIL END;

NEWLINEt.STARTCOL *NININT+I;
NEWLINEt.ENIKCOL :- MAXINT-1;
NXVEW :- NEWLINE;
LASTNEWSEG -.- NEWLINE;

END; (6 SETLINE 0)

PROCEDURE ADDRUNLENGTU (COLUNN: INTEGER);

VAR NEWESE PTRRUNLEON;
BEGIN

IF NEWSEGt.NEX <> NIL
THEN NEWESTSW :=NESG f.NEXT (0 ADVANCE NEW SEGMET POINTER IF

A SEGMENT ALREADY EXISTS 0)
ELSE BEGIN

NEWINEW99TWO), (0 CREATE A NEW SEGMENT IF IT DOESN'T EXIST 0)
NEWSEG'.NEXT :* NEWESTSEG; 0CONNECT NEWEST SEGMENT TO LIST 0
NEWNSTSE~t.NEKT - NI1L END;

NEWSEGt.ENDCOL -. COLUMN - Ih
NEVFISTSEGf.STARTCOL :- OLUNN,
NESTSE~s.ENDM.1 :- MAXINT-I-
NEWSEG :- NEWESTSEG (0IJDATE SEGENT POINTER TO TUE NEVR SOGENT 0)

END; (0 ADDRUNLENGTI *)

PROCEDURNE CREATERUNLENGTHS;

(0 FOR EACH TRANSITION. CREATE A NEW RECRD FOR THE RIJNLENGTI SEGMENT 0)

VAR I- INTEGER;
BEGIN

IF BITIII - INK THEN ADDRUNLENGTU(I);
FOR I :- 2 TO NPIXELSPERLIINE DO

IF BITII-II <> NIT(I THEN ADIIRUNLENGTH(I);
IF DITINPIXEI-SPIRLINEI - INK THEN ADDRUNLENOTH(NFIXELSPERLINE.I);
LASTNEIISEG :- NEWSEG;

IF TRACENUNLENGTHS - ON THEN TYPERUNLEMTIS;
END; (6 CREATERJNLENGTIS 0)

(**P. NEW PAGE 0)
PROCEDURE ADDRI(NITPERINVOINT(VAR PERIN:PTRPERINSSM ION, LINE,COL: INTEGER);

(0 THIS PROCEDURE ADDS ONE POINT TO THE PENIMIETER LIST. THlE NEW POINT IS
INSERTED BEFORE THE POINT DESIGNATED BY PERINt.RIGHT *)

VAR NEWPOINTER: PERIMPTR;,

BEGIN
I(EII(NEWPOINTER);
NEWPOINTERt.LINE :.LINE;
NEWPOINTLVR?.COL C EOL;
NEWPOINTERt.NEXT :.PERINt. RIGHT;
PERIU?.RIOHT :* NEWPOINTER-

END; . 0 ADORIGIITPERIMPOINTS

FROCIDUR1 ADSLEW7P! IMPOINT IVAlt PERIM. ?TRPUIMETION; LINE,IOL: INTROUII

10 THIS PROCEDURE ADDS ONE POINT TO THE PERINI!TER LIST. TIRE NEW POINT IS
INSERTED AFTER THE POINT DESIGNATED BY PERNt.LEFT *I

A-12

VAN NEWPOINTER: PERINPTI;
BEGIN

MEMWNEWPOINTER); NS)
NIEWPOINTERt. LINE :*LINE;
NEW PO INTERt.COL :.COL;
NEWPOINTERt NEXT :*NIL-
PERIILFtNX :. NEWOINTER; (0 CONNECT PREVIOUS POINT AND NEW POINT *

PEI9LEFT :-NEWPOINTER- to REST LEFT POINTER 0)
END; 4- ADDLEFTPERINPOINT 4)

CORP* MN PAGE 0)
PROCEDURJIE INSERTSEGUENT (VAR STANTCOL .ENDCOLA NTEGER);

VAR SURRBLOB: BLOBPTR;,
sUJRiCONP: INTEGER;
SWINCOLOR : BINARY,
AB: SEGPYR;
COL: INTEGER;
NEWPER IN: PTRPER lNSECF ION;

BEGIN
IF TRACEDIAGNOSTICS - ORf THEN IRITELN('BEGIN INSERTION';
SUHRRBLOB ~.PREVSEGt.BLOB; (0 SUIRROUNDING BLOB e)
SIINNCOP :-SURRBLO)Bt.CONP*
SURRCOLOR :~SUiRBLOB#.cOi6R;

to CREATE A NEW BLOB FOR THlE NEW SEGMENT *)

NEW C(BLOB)
WITH BLOB; DO BEGIN

IF SURICOLOR - BKOND THEN COLOR :.INK
ELSE COLOR :. KOND;

NEWCOMPNUX :- NEWCOMPNIJN * 1;
COMP :.NFWCOMPNIIN;
AREA :.0.0;
MNIAN :~0.0;
VNEAN C0.0;

)XNIN :-STARTCOL;
)XMAK ENDCOL;
YNIN LINENIJN;
YNAX LINENIJM;
PARENT :- SURIIBLOB;
NEXT :- NIL;BO
IF COLOR - KGND THEN PERIM : NIL to NO PFRINETER LIST 703N BACKROUI)DBO

ELSE BFMIN
NEWEPERIN); LNRMSATO) *AOFRTPIT*
PERI~f.PREV :*PE31Mg

PENINIRIGHT :*NIL;

PERlNt.LEFT :- PERIMN R1iiJH
FOR COL :- STARTCOL. I TO ENfICOL DO

ADDRI(11?PERINPOINTCPERtIN.LINENIN,COL) to ADD REMINING POINTS *)
ED to ELSE 0)

END (0 WITH BLOBt 0)
IF TiRED2)AGNOSTICS - ON THEN W11TEMN(DIJG INSERTSEOVJNT 2');

to FORM A NEW PERIMETER SECTION FOR THE SURROUNDING BLOB 0)

WITH SURIBLOBt DO
IF COLOR <> BKOND THEN BEGIN

(0 CREATE A NEW PERIMETER SECTION AND INET IT BEFORE THE
CURRENT PERIINETER SECTION 0)

NEW 4NEUPER IN)
NEWPERINN. NEM PERIM,
NEWPLRIM9.PREV :PERINt.PREV;PEN[It. PREVI. NEXT :- NEWPERIM;
PERINt.PREV :- NEMPERIN

40 MOVE PART OF THE RIGHT? ED OF TIM! CURRENT PERIMETER SECTION TO THE
HN PERIMER SECTION 0)

WITH PERMN DO BEGIN
NEVPERIH'.RIZHT :- RUNBT; (0 SET RIGHT POINTER OF NM E TION 0)
IF TRACEDIAGNOSTICS ON THEN WRITELN('DBUCI INSERTSEGNENT 2A);
WHILE 4RI(NITf.LINE 0LINENU-I) OR CRICGftt.(XL <> ENDCOL1)

DO BEGIN4 IF TRACEDIAGNOSTICS - ON THEN WITUJ(RI(ITt.LiN(E,RIUITt.OOL,LINUUM1I.UIDCOU
RIGHIT :- RIINTt.NEXTf END;

IF TRACEDIAGNSIi(S - ON THEN VRITELN('DBUO INSETSIENT 25'),
NEWPEI~f.LEFT -a RIGHT. (- SET LEFT POINTER OF NEW SECTION 0)
IF (RIGHTI.NEXTt. LINE - LINENUN-1) AND (lIGHfMtNET,.COL >RIOHfI.00L) TEN RimE to RUNft.N7RT:
WHILE 4RI(UITf.NEXTt.LINE - LIMNMIN-I) AND ERIGIT.NffXTt.00L > RIUITf.COL) DO BEGIN

IF TRACEDIAGOEJTICS - ON THEN WRITELN(RI(NITt LINE RIGHT1.0COL LINEUM-I);
RIGHT : RI(NITt.NEXT; (o SET THE Mimi1 POlIfNTE 6F' THE CIURbi

SECTION To THE ENDPOINT OF THE LINE
SEGIIET ON THE PREVIOUS LINE THAT IS
PART OF THlE SURROUNDING BLOB

END;

A-13

IF RIGHT M EWERIMf.LEFT THEN BEGIN
COL :% RIGHTf.COL;
RIGHT :- RIGHTI NEXTf
ADDRIITPERINPOiNTEfkRINXLINEUN-I .COL); EID;

NEWVERIMl.LEFTf.NEXT :- NIL;
END; (0 WITH PERlE? e)

PERIN :- NEWPklRIN
~JFl; (0 WITH SURRBLOB? *

(0 INSERT 2 SEGVMES IN THE AM IVE LINE IMMEDIATELY1 BEFORE THE CURRENT
SEGMEN POINTER 6)

IF TRACEDIAGNOSTICS - ON THEN VRITELN('DBUG INSERTSEGMENT 3*);
NEWIA); NEW 1B) ;
At.STARTCOL STARTCOL;
Bt.STrARTCOL :.ENDCOL*I;
Af.ENDCOL :~ENOCOL;
Bi.ENDCOL CURRSEG#.STARTCOL - 1;
AvIOB :BLOB;
Bi.BLOB SURRBLOB;
PREVSEOI.NEXT :-A;
At.NEXT :*B;
Bt.NEXI : CURRSEG;
CIJRSEG : A; (0 ESET CURRENT SEGMIENT POINTER *)

IF TRACEACT IVEL INESEOMENTS - ON THEN TYPEACT IVELINESEGMETS;
IF TRACEPER INS - ON THEN BEGIN

WRITEPERIMS(TTYSURRBLOB); VRITEPERIM(TTY,BDWB) END;
EID. (4 INSFRTSEGMENT 0

(O*P. NW PAGE *)
PROCEDURE ADDBLOB (VAR BLOBTERMBWOB: BLOBPTR);

(0 THIS IS A RECURSIVE PROCEDURE FOR ADDING A BLOB TO THE END OP
THE LIST OF COMPLETED BLOBS 0)

BEG IN
IF BLOB - NIL THEN BLOB :- TERMUBLOB

ELSE ADDBLOB (BLOBt.NEXT ,TERNBLOB)
END; 0ADDBLOB 0

PROCEDURE RECORDBLOB(VAR TERMDLOB: BLOBPTR);

BEGINI
IF (HANDONLY AND (TEIMBLOB? .AREA < AREATH)) OR BLOBURITTEN TUI ELSE
WRITE ERIISEPERINFILE.TERMBLOB);
IF HANDONLY AND (NOT BLOBWRITTEN) AND (TERMBLOBt.AREA .AREATH) TME SWUIN

BI.OBWRITTEN -. TRUE;
IdRITELN('BLOB OF HAND IS DOME'); END

WITH TERNBLODt.PERIMf DO DELETEPERINS(RIGHT.LETT);
(0 I)ISPOSE(TERMBLOBI PERlE); 0) 05)

ADDBLOB (BLOBSDONE *TERMBL.OB);

END; (0 RECORDDLOB 0)

(00?. NEW PAGE *)
PROCEDURE DELETSEMENT;

VAR TERMBLOB *RiOMTILOB *LEFTBLOS inEPLACKLOB.AUSORBBI.OS: BWUPTR;
TE'NCOMP * HIGHTCONP.*LEPTCOIM? REPLACCOEP * ABSORBLONP: I NTGR-
RII3IITCOLOR: BINARY;
NFWIAREA: REAL;
OLUPERIM: PTRPERIPMECION;
PERIMILPOINTPXR IMRPO INT, INTER IONPO INT, NEXTPOINT: PERIMPTi
COI..ABSORRCL INTEGER;

BEGIN
IF TRACEDIAGNOST I CS - ON THEN IIUITELN('BEGIN DELETING');
TF.RMIB ' CUORRSI.BLOB; 4b TERMIINATING BLOB 0)
TERMLONP :TERMBLOB? .COM?;
RI(RITBLOB : CJRRSF.Gt.NEXTv.BLOB;
RIGHTCOMP :.RIGHTRI.OB?.COM?;
RIGOOR : RIEUITBL0Bt.COLOR;-
LEFTBLOB :0PREVSEGt.BWOB'

LEFTCOMP ;-LEF!BLOB' .ECoM;
IF RIcNITCOMP - e

THEN BEGIN
REPLACBLOB - H UTSLOBi ABSORBBLO3 z LEWTBLOS;
REPLACCONP ;.UIGHTCONP- AUSORIICONP ;.LEFTCONP END

ELSE BEGIN
REPLACBILOB .LEFBLOBI ABSORBBLOSI :.UIIUTIWS;B
REPLACCOMP .LEFTCOMP ABSORHCONP :*R IGHTCOMP END;

IF TRACEDIAGNOSTICS - ON THEN BE6IN
UR ITELN('REPLACING COMPOENT .' ,RtPLACCOMP,

ABSORBED COMPONEN -' AB3ORBCOMP 4;
IIRITELN 'RIGHTfCOLOR.' ,RIGIITCO6Ri. RIGHT CO00 -,IITONP) END;

A-14

(* CONNECT THE ENDS OF TWO PERIMETER SECTIONS OF THE TERMINATING BLOB IF ITS
COLOR IS NOT BACKGROUND *)

WITH TERIBLO0t DO
IF COLOR <>, BkGD THEN BEGIN

(ADD INTERIOR POINTS ON THE BOTTON LINE OF THE TERMINATING BLOB TO THE
LIST OF PERIMETER POINTS 0)

FORt COL :. CURRSEJt.STARTCOL. I TO CURRSEGt.ENDCOL-I DO
ADDLJ'TPEIIMPOINT(PERIN.LINENUJI ,COL);

(* IF THERE IS MORE THAN ONE PERIMETER POINT IN THE BLOB AND
IF THERE IS ONLY ONE POINT ON THE BOTTOM LINE OF THE TERMINATING BLOB.
IT IS AT BOTH THE LEFT END CF THE CIJRRENT PERIMETER SECTION AND THE
RIGHT END OF TUE NEXT PERIMETER SECTION; DELETE THE POINT AT THE
RIGHT END OF THE NEXT PERIMETER SECTION 0)

IF (PERItHt.LEVT <> PERItHIRIGHT) AND (CURIIRSEGf.STARTCOL - CURRSEoGt.ENDCOL) THEN
WITH PERfC' N1EXT DO RIGIT :- RIGHTI.NEXT;

IF TRACEDIAGNOSTiICS - ON THEN WRITELN('DISPOSE CHECK I ');
IF TRACEFERINS - ON THEN WRITEPERINSiTTYTERNMLOB);

(0 CONNECT THE LEFT END OF THE CURRENT PERIMETER SECTION WITH THE RIGHT
END OF THE NEXT PERINETER SECTION 0)

WITH PERINt DO BEGIN
LEFTt.NEXT :- NEXTtoRIGT;
NE.XTI.RIGHT :- RIGHT; (9 RESET THE RIGHT END POINTER OF THE

NEXT PERINETER S.I.'TION *)
PREVt.NEXT :- NEXT; I CONNECT THE PREVIOUS SECTION 0)

NEXTt.PREV - PREV END; W WITH THE NEXT SECTION e)

OLDPERIM :- PERIN;
PERIN :- PERINt.NENT; (0 ADVANCE THE PERINETER SECTION POINTER o)

to IF THERE IS NONE THAN ONE PERIMETER SECTION, THEN DISPOSE OF THE OLD ONE;
OTHERWISE, ADD THE BLOB TO THE LIST OF BLOBS DONE *)

IF PERIN <> OLDPERIM
THEN (0 D SPOSE(OLDPERIN) *) (ONSP°)
ELSE RECOIRDBLOB(TERMBLOB);

END; (0 IF, WITH *)
IF TRACEDIAGNOSTICS - ON THEN WRITELN('DISPOSE CHECK 2');
IF TRACEPERIMS - ON THEN WRITEEMIRSITTY,TERMBLOB);

(CONNECT THE ENDS OF THE TWO PERIMETER SECTIONS OF THE REPLACING BLOB IF ITS
COLOR IS NOT BACKGROUND 0)

WITH REPLACBLOBt DO BEGIN
IF COLOR <p BKOND THEN BEGIN

(0 CONNE"CT LEFT END POINT OF ABSORBED SECTION TO A PERIMETER POINT IN THE
REPLACING SECTION 0)

PERIMLPOINT :- PERI~t.RIGHT;
WHILE PERIALPOINTt .COL <) ABSOEBBLOB .PERINt.LEFTt.COL-I DO
PERINLPOINT :- PERIMLPOINTt .NEXT-

ABSORBLOB .PERINt LEFTt.NEXT :- PRIMLPOINT;
IF TRACEDIAGNOSTICS - ON THEN

WRITELN('PERINLPOINT -'.PERIMLPOINT .LINE4 ' PERIMLPOINTt.COL:4);
IF TRACEPERIMS - ON THEN WRITEPERINS(TTY,RELACtLOB);

PERIMMUOINT :. PERINt.RIGIIT;
ABSDORBRCOL :- ABRSORBBLOB .PERMt.NEXTt.RICGITt.COL;
IF PERINt.RIGHTt.COL > ABSORBRCOL.I THEN

WHILE PERINRPOINTt.COL <> ABSORBRCOL.I DO PERINRPOINT &- PENIURPOINTt.NEXT
ELSE IF PERINt.RIGHTt.COL (ABSOIBRCOL-I THEN

FOR COL :- ABSORBRCOL-I DOWNTO PERINtRIGRTt.COL.I DO
ADDRIHT IERIMPOINT(ABSRBLOBfI .PERIn.NFXT ,LINEUM-ICOL);

IF TRACEDIAGNOSTICS - ON THEN WRITELN('DISPOSE DBUG 2B');
IF TRACEPERINS a ON THEN WRITEIERINS(TTY,REPLACDLOB);

(0 DELETE POINTS IN THE MIDDLE OF THE LINE SEGMENT CONNECTING THE TWO
BLOBS WHICH ARE NOT NOW PERIMETER POINTS o)

IF TRACEDIAGNrSTICS - ON THEN
WRITELN('PERINAPOINT -',PERIRPOINTt.LINE:4,','.PERINMIPONTt.COL:4);

IF (PERINLPOINT <> PERIMRPOINT) AND (PERINLPOINT <> PERJIMPOINTt.NEXT) THEN BEGIN
NEATPOINT -- PERIIRPDINTIt.NEXT;
WHILE NEXTPOINT <> PERIULPOINT DO BEGIN

INTERIORPOINT :- NEXTPOINT;
NEXTPOINr :- NEXTPOINTt.NEXT'
(0 DISPOSECINTERIORPOINT); *) END END; (ONSF)

IF TRA DIAGNOSTICS ON THEN VRITELN(lDISPE DRUG 4');
IF TRACEPERINS - ON THEN WRITEPERIMS(TTY,REPLACBLOB);

4' CONNECT THE RIGHT END POINTS OF THE ABSORBD AND REPLACING SECTIONS o)

A-15

IF PERIMLOINT *PERINRPOINT THEN
ADOR IGHTPERIMOINT (AISOUtBBL.OSW PElls .NEX LIRNUVII.PRIMMPOINTt .COL)

PFRIMRPOIMTf. NEXT :a ARBOBt -PERIMI. NEXT#.-RICKW;
At5011'BU)BW.PERIt.NEft'.R(NI :- PERI~t.RIGHT; END;

IF N' Eit-IGT :-ANSORBSOL0t.PERIMS.RI(UIHTIF EIAWSTC - ON THUN IIITELMd DISP&SE DBUG 4B'); j
(0 MIRGE PERIMETER SETION RINGS OF THE ABSORBED BLOB AND 131! REPLACING SLO0)

IF (OUWERIN - OLDPENINt.NEXT) AND (OLDPERIN a OLDPERINt.PREV)
THE.N BEGIN (4DISPOSEtOLDPERINM *) END NS*

ELSE
IF REPLACBLOB () ABSORISLOB

THEN BEGIN
0INSERT PERIMETER SECT IONS OF ABSORBED SLOB BUEOR PERIN# 0)

IF TRACEDIAGNO6TI(S - ON THEN IIUITELN('DISPOSE DBUG 7').
OLDPF.NM.PREVt.NEXT :.PERIN;
OLDPENII.NEXTI.PREV PKINM.PREV;
PERINI.FREV1.NEXT :- OLDPENINS.NEXT;
I'ERIMI.I'REV -OL.DPERIMt.PREV-,
PERIN :6 OLDIEIII.NEXT;
(o DISPOSE(OLDPERIN); 6) (*MwP)

END
ELSE BEGIN

(0 ADD PERIMETER LIST TO THE BLOB DESCRtIPTOR OF THE TERMINATING BLOB (IUI(
HAS THE BACK.GROUND COLOR IF REPLACING BLOB - ABSORBED 31.06) 4)

(0 INSERT PERIMETER SECTIONS OF ABSORBED BLOB AFTER PERM? *)
IF TRACFDIAGNOSTICS - ONf THEN VRITELN('DISPOSE DRUG It');
PERIl? .NEXT? .PREV :- OLDPERIMS.PREV;
OLDI'ERIM' .PREVI NEX T :- PERIMI.NEXT;
PERIN :- PERII.NEXT;
TERMBLOBf.PERIM OLDPERIMI
OLDPER[Of.RIGHT :PERINLPOiNT;
OLDPERINt.PRFV :.OLDPEIM;
OLDPERIMt.NEXT :OLD)PERIM;
RECOIDBOB(TERMBLOB) END ;

IF' WELACBLOB C'ABDRBBLOB THEN AREA :- AREA *ABSOR3BLOBS .AREA;

END; (IF COLOR>BKOND)

END; 0e WITH REPLACBLOBt 0)

IF ABSOUBBLOB (> RELACBLLOS TME BEGIN

0 NOTE -- THlE PARENT IS NO0T COMUIITED CORRECTLY 0

IF TRACEPARENT THEN IIRITELN('LINE " LINENUN-3 ' ABSRIMLOB.'
ABSOIIBBLOB? .CONP:3,' REPLACBLOB.,,REPLACB6Bt .0)1?)

(0 CHIANG ALL INSTANCM OF THE ABSORBED COMPONENT IN TUE ACTIVE LINE TO
THE EPLAINGCOMPONENT 61

SO -ACTIVELINE;
WHILE '' t N IL DO BEGIN

IF SE~t .BLOB - AUSORBBLOB THEN SE~f.BLOB :- REFLACBLO;
WI1TH SM-81BLO1s DO IF PARENT - ABSORBBLOB9 THEN BEGIN;

PARENT :- REPLAClILOB;
IF TRACEPARENT THEN 11RITELN('REPLACINO PARENT IN SEGENT FOR BLOB I'.CONIP%4); END;

SEC -:o SE~t .NLXT END;

(9 CHANCE ALL INSTANCES OF THE ADSORBED COMPONENT NUMBER IN THE
LIST OF BLAViS DOME TO THE REPLACING COMPONENT NUMBER 0)

END; (6 IF ABSORBBLOB (> REPLACBLOB 0

40 DISPOS(ASOBBLOB) 0) NS)
IF TRACEDIAGNST ICS - ON THIM NRITEN('DISPOSE DIMG 6');

is DUE THE CURRENT SEGMENT AND THE SEIIN FOLLOW ING THE CURRENT ONE FROM TIM
ACTIVE LINE- SET THE CURRENT SEGMENT POINTER TO THE FIRST SEGMNENT AFTER TEE
DOMEED ON9. -)
PREYSEII NEXT :- CURSO~ EXT f 41 NEXT;
0 DISPOSE(CURISEt.NEXCT); 0)ae

46 DISPMB(CURRSEG); o) (*"we)
CIIRRB : PREYSEC . NEXT;
IF TRACEACTIVELINESMGENTS *ON THEN TYPEACTIVLINESEUTS.
IF TRACEBLOBS *ON THEN TYEBLOBS(TTY);
if TRACEPERIMS *ON THEN TYPEPERINS(TTV)

560; lo DFEMEOffN 6)

A-16

ikIL 1

(**P* NEW) PAGE 0)
PROCEDURE UPDATEPER IM4 VAR PER IN PTRPFRI MSECT ION; CURRSTAUTCOL .CIRRENDCOL,

NEW-STARTCOL,NEWENDCOL: I NTEGLIRJ

(FOR CASE 3 ONLY e

VAR COL: INTEGER,

IF CIJRRSTARTCOL4. I NEVSTAIIYCOL THEN
FOR COL :.CuRSTARTCOL. I TO NEWSTANTCOL-I DO

ADDiLEFTPERIMPOINT(PERIM,LIENUN- I.COL);

IF CURRSTARTCOL- I NEEVSTAWTCOL. THEN
FOR COL : - CUIRSTARTCOL- I DOWNTO NEWSTARtTCDL* 1 0O

ADU.EVTPER INMPO I NT (PMR IN, L INENUM .COLU

ADDLETTPERIMPOINT (PERIN. LINEEUN.NEWSTARTCDL);

PERIN :- PERIl' .NEXT; (s ADVANCE PERIMETER SECTION POINMH

(4 RIGHT SIDE 6)

FCURRFNDCOL) NE'IENDCOL * I THENMI
FOR COI. -- CURRENIJCOL-I DOVNTO NEIIEPDCOL4. I D

ADDR IONTPER IMPOI NT(PER (M. L PENIM- I .GM);

IF CUNRNDCOL < NEIEENDCOL - I THEN
FOR COL :- CI)RRENDCOL. 1 TO NEWlENDCOL- I DO

A 1)01 I(IPLR IMPOINT(IPER IN,LINENUM ,COL);

ADDRII3ITPERIMPOINT(PERIM,LIEEUi,NEWENDCOL);
END;. (6 UPDATEPERIM 00

(*$P* NEW PAGE 0)

PROCEDURE CAS:3PROCSI NG(VAR CURRSEG:SEGPR; STARTCOL, ENDCOL: INBETI;

VAN NEWAREA.XLINEAVE: REAL;
BEGIN

IF TRACEDIAGM OST ICS - ON THEN WRITEIJ('BEGIM CASE 3 PROCESSING');
WITH CIJRRSFS'.BLOBi DO

IF COMP (> 0 THEN AREA :- AREA * ENDCOL - STARTCOL * 1I;

IF (CURRSEGf. .091. COLOR (> BKOND) AND (CUSEG? .DWSI.TMJN 0) LINEMU) TUHE
UPDATEPERIN(CJMRSEO tBLOB' .PERIU.CURRSEG .STARTCOL.CURRSB3# ENDCDL.STAITCO.EDWL);

If TRACEBLOBS - ON THEN WRITEBLOBITTY CURRSE~t.BLOS);
IF TRACEPER IMS - ON THEN WRITEPERIMS(T?.CURRSEG'.BLO3)

END; (0 CASE3PROCSING 4)

40*?* NEW PAGE 0)
PROCEDURE PROCSL IKE;

VAN OPL ElR2O: INTEGER;
BEGIN

IF LINENUN - I THEN MEIN
MEN (SLOB); (0 CREATE A BLOB DESRIPTOR FOR TIM BACKGOUND)
611TH BLOB# DO BEGIN

COLOR BK OED;
ECOMP 0;
PERIN : NIL;,
AREA e0;
PEMEAM 0.8;
YMEAN 0 .0;
KVN 0;
XNAX 0 ;
THIN 0;
YMAX 0;
PARENT :- NIL;
NEXT :- NIL END;

(0 INITIALIZE THRE ACTIVE LINEE 0)

MEW(ACTIVLINE); (0 THE FIRST SEGUIB CORRSONDS TO TUE BACKGROUND
WHICH IS TO THE LEFT OF THE FIRST COLUMN *

ACTIVELINEI.STARTCOL :- NINIMT*I;
ACTIVELINEf.ENDCOI. : MAXINT-2i
ACTIVELINEI.BLOB :0BLOB-
NEE(CURRSW); (0 THIi SEGMENT IEC IPTO CORUmOND TO TUE BAcKIDmN

WHICH IS TO THE ff1011 OF THE LAST COLUMN
ACTIVELINEt *NEXT :CUIRSEG;
CURRSEGt.STARTCOL M AXINT-I;
CU MSEO'.ENDCOL :- MAIT-I;
CURSEO'.-SLB BLOB;
CIJRJSEGt.NEXT =NIL
END, (f IF LINEMN - I *)

A-17

IF LINENUM W SK!? THEM SWIMN

CURR :* ACTIVELINE; (0 INITIALIZE THE CURRENT SEGENT POINTER 4)
NEVSEG :V NEWdLINE; o INITIALIZE THE NEW SEGMENT POINTER *)

MEAT
WITH NEWSE~t DO BEGIN

IF TRACEDIAGNOST ICS - ON THEM BEGIN
IDUITELNE 'CURRSEG? .STARTCOL - CUREt.STARTtCOL.' CURR9=*.EDOL *CIJERSEt .5103U;
VR ITEL NE ~ .STARTCOL - *.fRTO. M EW3m .ECO - -.,ENDCOL) D-
IF CURRSEfA3.BLO~f.COLjOR - INK THEM ONdERO :- I

ELSE ONEER *6iwmm -CS
WHILE STARTCOL > CURSE~t.ENIICOL#ONEZENO DO E TM T (CAEI*
IF TRACEDIAGNOSTICS - ONf THEN VRITELN(DBUG I'ROCSLIME I)
IF ENDCOL < CURRSE~t .STARtTCOL-ONEZERO THEN INSERTSEGMET(STA3TCOLEINOL); (0 CASE 2 0)

CASE 3IROCSSING(CURRSEGSTARtTCOL,*ENDCOL);
CURR.E~t .STARTCOL :* STARTCOL;
CURRSEG'.EMDCOL - ENDCOL;
END; (0 WTH NEWSEGt e)

FREVSEG: CURMLSEG; (9 ADVANCE THE PREVIOUS SEIUIENT POINTER 0)
CIJRRSEG CURR-SE01.1NEXT; (0 ADVANCE THE CURRENT SEGMENT POINTER 0)
NEWSEG : EWSEGI.NEXT (0 ADVANCE TUE NEW SEGMENT POINTER 0)

UNTIL NESE a LASTMEWSEGt.MEXT;
IF TRACEACTIVELINESEGNENTS - ON THUM TYPEACTIVELINSGNEMTS-
IF CUERSEG - NIL THEN BEGIN IIRITELN4TTY. 'ERROR: CURSEO.NJIL)i FAME ED;
WHILE CURREt.EXT <) NIL DO DELETESEGNENT;. (9 PROCS ALL SUONENTS REMAINING3

IN TSE ACTIVE LINE EXCEP THE
LAST SH(RENT 0)

END; (0 IF LINENUN > NSRIP 6)

END; (0 P3OCSIKE 4)

(*OF* NEW PAGE *)
BEGIN (0 MAIN FROGRAN 0)

RANDOMLY :- TRUE; BWSWIRITTEM :a FALSE;
WRITEt('TYE INPUT IMAME NAME:');
KEAOLN;? READ'NPuTNAME); (*Nwp)
R I TrI INUTIMAGE. INPUTNANE); (ONP)
NEVRITE(IPATAFILE 'DIJDY DAT)' (MSPO)
IIRITELNI'TYPE OU*PUT PERIMETEA FILE NAME-');
READLN, READ(PERINNAME); (ONP)
REWRITE(PERtIXFILE PERINNANE), (oNsE)

IiRITELN4'TYPE +iIRESHOLD kK SLOB ARE:');
READLNiER:EAD(IAREATH); AREATI :- [IRATRI

WRITELN('1'RIETER LIST COMPACTED EVERY X LINES, TYPE X:');
READLN; READ(LINEGROIII;

TRACEI'ARENT :- FALSE-
WRITELM('TYE 0 OF LINES TO BE SIh 1 ED AT THE TOP OF TUE IMAGE');
RFADLM-, READ(NSIP);
RECIUS :- FALSE;
WRITELNV'TYPE "I"' FOR INTERACTIVE DEBUGGING')'
WRITELN(' OR "U'' FOR UNINTERRUPTED PROCSIM:');
READLMN; READ(CMD)
IF CUD - 'I' THEN INTERACTIVE :*TRUE

ELSE INTERACTIVE :.FALSE;

VRITFJ24('TYWE "'T' TO TYPE OUT LINE MNBER;');
READLN- READ(ONOFF);
IF ONO&F *'T' THEN TYPELINENUNS :- TRUE;

LINENUM 0* ; NEWCONPNUN :- 0; BLORSDONE :- NIL; RECYCLEDPTU : NIL;.
CHARTOT 0* ;
NEW (AMRYP IIFOR I :- I TO 16 DO BEGIN

NMW(ARRAYP II. I);
ARRAYIII.MEXT :- ARRAYFII'II; END;

ARRAYP(Illt.NEXT -.- NIL;
IF NOT INTERACTIVE THEN NLREAD :- I;
TRACEBLOBS :-OFF; TRACEPER INS :e OFF- TRACERUNLENGTHS i- OFF;
TRACEACT IVELINESEGMENTS : - OFF; TRAC6IAGNOST ICE :v OFF;

RMEAT
IF INTERACTIVE THEN BEGIN

ItMITELI(TYPE COIAND: "L 11 ."o .'-- A D OR l Is. 1);
READLN- READ(CND);
IF cF& = LINEINI THEN MEIN

VRITELN('TYPE NUMBER OF LINES TO BE 12AD',j
READLN;. READ(MLREAD) END

ELSE MLREAD :- I END
fUSE CUD :- LINEIM;

A-18

IF CND - LINEIN THEN FOR NTIMX : I TO NLREAD DO03MEIN
LINEMUM :- LINENUM # 1;
IF TYPELINENUMS TIEN WRITELNMILIKE 1,LINENlU:3)j
GETLIME.

IF (LINENUM - 11 OR (LINOEN > ((SIP) THEN BEGIN
IF LINENUM MOD LINSOROJ - 0 THEN PACKPERINSI
SETLINE;
CREATERUNLENGTMS;

ENDI PROCESLNE;
END

ELSE IF iDID <> STOP) AND (CUD IN CXDSET) THEN BEGIN
READ(ONOFF);
CASE CUD OF

DIAGNOSTICS: TRACEDIAGNOSTICS :- ONOFF;
LISTBLOBS: TRACERLOBS :- ONOFF;,
LISTI'ERIMS: TRACEPERINS ,. 0140FF;
LISTRUNLENOTHS: TRACERUNLENGTIS :- 030FF-
LIS1ACT IVELINESEGMENiTS: TRACEACTIVELIN13*MENITS! :. 0FF
END; (4 CASE e)

END; 16 IF e)

UNTIL (CUID - STOP) OR (LINENUM - NLIMES) 0R BLODURITTEN;
LINENUN :- LINENIIM *I-,
SETLINE; (a PROCSS A LINE WJITH NO RUNLENGTHS TO 0)
PROCESSLINE;1 (a ENSURE COMPLETION OF BLOB PROCSING 0)
VRITELN01LINEBYLIN -- ALL DONE');

END.

PROGRAM SCAN
C - Frog re to reod unfrmatted soquestiel date ftle of had date

C - hatweregesratd with pros LINEDYLIN as 31109411 nses,.
C -and ea. poitiona is space of the fingers and the corresponding
C -imierdigital spaces.
C---------------------------------

I FORMAT (14, IX, 14)
2 FORMAT (/' Type is filoegme or Input date fil. ')
4 FORMAT (Q,34AI)
S FORMAT (14)
6 FORMNAT (I "FINGER 0" INCLUDS INTERDIGITAL SPAE - I a LITTLE

*FINGR)
7 FORA (I.FINGER 0, 31 'ARRAY POSITION' 3X1XVAL',1 1'TAL

4.SX 'LNG!I' 'X' -ivfH-,21ATIO L/I3'.3X sLPE',X.US I4KT

S FRMAT (2*,,X 15 OX F8.2 X,FS.2,X,*S.2.
#K,FS .2,*X ,FR.2 *X ,FS.. ,k .; 3)

9 FORMAT (/0' Length of sees window (12-6m) -*
I0 FORMAT (12)
It FORMAT (/IX.' Length of sae window a '.14,' (12 - S mm)')
12 FORMAT (/a, Angle for finger.
13 FORMAT (FG.B)
34 FORMAT :IS' Angle for thumb *'
Is FORMAT (/8' Finger agle - ',F6.0, Thumb alti* # 106.6)
16 FORMAT (////IK" 'Isu;12file '14A1,2X, Output file 1,1"A1)
17 FORMAT (2X,16.6(2K. VS .))
19 FORMAT (/' At Thumb Crotch: Bandwidth - ',176 2 21 'Perima

4F13.2,2X,'Aro* - '.F13.2,2X.'Rn1tio IPO*2/A)' ;,$*)
20 FORMAT (/5' Type I to ha: aapitdot tado .t'21 FORMAT (/9' Typo I to ak mbeasu.re pot cmpl lot '

22 FORMAT (7(X Peri P)23 FORMAT /I ksTirs Raed: Pel ,1.2,2X,'Area - '.F13.2.21t.
#'Ratio IPO*2VA) - 1.F6.3)

24 FORMAT 4' Type I if you sat to change parameters '
25 FORMAT (333.1 7F16.3,/.(l0X,7F10.3))
26 FORMAT (9 Ti pa sumerio codes for SUBJECT ID, SESSIO. TRIAL '
27 FORMAT (14.34.14)
25 FORMAT (/1 Type is fileseme for ouPut data file '
29 FORMAT (/1 Type DIST end A criteron for ourvature sat')
30 FORMAT (75.2, V.3)
31 FORMAT (/' Type number (odd) of points to skipped at start')
C--

DIMENSION END(2) ,MID(2) RF.AD(2) TEMP(2)
DIMENSION FNGTI(I 2)tGEl)FGID(IS).VALIE(30)
DIMENSION SLOPE ie :ZY R,(10) ,LIN (30)
DIMENSION TANGLE(IGS) DLN(We),CURVE(3o)
INTEGER]DATA (6W6e) , FINGE,FNGN(IS) , INID'fU(I) , IDIN (600S)
LOGICALeI IFILE(34), F1LE2434)

C---
ANGLE I u 90. IDefeult criterio eagle shift forfstp
ANGLE2 - 90. tDoeaut criterion maile shift for thumlb~
IBIS - Is !Default dint batween points
DISTC *49.0 !Startilg dist from finetip for curve.
CRIT - 6.96 tCritenloy fit for ourv tore fe.
ISIART - 20f ?Skip hIn first points
IFPLAG 0
IF - a
TYPE 2
ACCFPT 4, ISIiIFILE(J). J.I,ISI)
TYE 28
ACCEPT 4. 1S2,(IFILE2(J), JIl,1S2)

A-19

TYPE 26
ACCEPT 27. IAUTH, ISE, ITRIAL
TYPE 26
ACCEPT S, IFLAG
TYPE 21
ACCEPT S. NPLOTF
TYPE 24
ACCEPT 5 IF
IF (IF .60. 8) 00 TO 49
TYPE 9
ACCEPT 5 IDIS
IDIS - 1615/2
TYPE 12
ACCEPT 13, ANGLE I
TYPE 14
ACCET 13. ANGLE?
TYPE 29
ACCEPT 36, DISTC.CRIT
TYPE 31
ACCEPT S ISTARI

48 CALL ASSIGwti IFJLEISI)
DD 58 K12.296.2

so READ (I IENS11FA1I WEN).IDIM1901)STCW - 9 Ao EOF '?
SI If (IDINtI) MNE. 6) O0 TO 52

K - K - 2 D9isregard overrvn points
GO TO 51

52 NPTS- K
CALL CLt I)
CALL SORT I]DATA. IDIN,NMPTS# 1)

C
C -Anqle algori the
C - Intiol ige **oters - tied agle an move throug data, omutaatly
C - udating the average agle. Move through deat il a window
C - fs* IDIS. in steps of IDIS/2. Points avegd. with trisngle o.
C -Wen find a large shift in the average angle (ANGLE for fiagers,
C -AINILE2 fo humb) store location of tip,* reimitialize
C -average angle. Store the loostion of the tip in the
C -data arraawlla anY oion i pa.
C -Calcuitte from the!seboth lengsth ansdiidth of figr.

END(2) - AVE(IDATA ISTART#.D
END(l) - AVE(IDATA.ISTART)
N10(2) - AVE(IDATA,IDIS#ISTART#l)
N1D0 - AVE4IDATA.IDIS*ISTART)
HEAD(2i - AVE(IDATA 201D1S*ISTARTol)
NEAD(I) - AVE(IDATA,2dl0lS*ISTART)
ANGLE - ANGLE I
FINGER - I
ICHT - 6)
N -
ALPHA a PALPIIA(EMD.HEAD)
SUMAL? - ALPM
AVEAL? - ALPHA
DO 298 I.30IDISISTARTNPTS.IDIS
END(l) - NID(1)
END(2) - M10(2)
M10(1) - HF.AD(I)
MID(21 - HEAD(2)
NEAD(2) a AVEEIDATA,1#l)
*EAD(l) - AVE(IDATA,I)
IF (I .LT. U-1) 00 TO 266
ALPH1A - PALPIIA(EMD WEAD)
IF (ASS(ALPHA-AVEAL) L1.. 166.) OD TO 76
IF (AVEAL? .0T. 6.6) ALPHA - ALMH 366.
IF IAVEALP .LT. 6.0) ALPHA a ALPHA -366.

70 DALP1A - AS(ALPHA - AVEALP)
C IF (FINGE .E. 4) PRINT 17,1ISD(2),END(l).NEAD(2),HEAI1l.
C *ALM I.AVEALP

IF (ICNT .LT. 6) 00 TO 99 tllove at least loe befere test
IF (DALPHA .01r. ANGLEJ 00 TO 100
Na NN* I
ICUT a ICHT # I
SUNIALP - SIALP 4 ALPHA
AVEAL? - SIJRALP.'N
O TO29

C
C - Feced a ringer
C
lop 3.1

lCWT a a
SIIAL - ALMH
AVLX a ALHA

c-Far flavors fine tao the leestios of the tip
C bidrawing a live through the *ester ef the fLager end tied the point
C - iItermeetioo with th ti.L - IDLTIS(IDATAI1IIS-I52. -2)

N a IDELTSjIDATA.I-IDIS-1,52.,2)
* : IDELTS(IDATA~lII-,2.2
K.* IDETSIIDATA:'t-IDIS-!,?2.2)

A-20

LINE WFI NO1I4-3)-J-ILINE(FINGIE*4-2)-L- I
LINE(FINGER*4-I) '- I
LINE(FINGERM -K-1
XAVE1 - AVE(IDATA.L)
XAVE2 - AVE(IDATA.9)
YAVFi - AVE(IDATA.L-1)
YAVEZ - AVE(IDATA,N-I)
XLM - IXAVEI # XAVE2)/2
YLA - (YAVEI * YAVE2)/2
KAVE1 - AVEfIDATA,J)
XAVE2 - AVE(IDATA.K)
YAVEI - AVE(IDATA.J-1)
YAVE2 - AVE(IDATA,K-1)
XJK - tXAVEI * Y.AVP.2)/2
YJK - ('(AVEI * YAVE2)/2
SLOPE(FINGER) - tYLK - YJK)/(XL - JI)
'iZEIO(INGER) - YJK - SLOPE(FIN GN *XJK
D 2.

156 LILI
APRINE -FLOAT(IDATA(LI-1)) - SLOPEFIN) * FLOAT(IDATALI))
IF (ADS(YZERO(FINGER) - APRINE) .LT. D) G0 TO 160
IF (L.1I.T. N) GO TO 150
LI - L
D - 24D
00 TO]so

166 TYPE 13. D
FWGNUMPFINGER - LI-1
FI4GTIP(FlNGER 2) - IDATAWL)
FNGTIP(FINGER.I) - IDATA(LI-1)
GO TO 196

165s FNGNIINFIN GER *I-IDIS
FNGTIP(FINGER,2) - MID(2)
FIEGTIP(FIN GERI) - MID(i)

196 FINGER ,FINGER + I
IF (FINGER EQ. IS) GO TO 281 Meoad off timsete

266 CONTINUE
201 IDIS - IflIS02

C -Celoolate lesath of fisger
005S1* 1.9,2

j .
IF (I .(". 6) J - -I

C - DELTAX a FMGTIP(I,2) - FMGIP(E+J,21
C - DELTAY *FNGTIPUl,I) - FNGTIP(1.J,I)'
C - FNGLEN(I) - ST (DELTAK**2 * DELTAY002)

FNGLEK(I) - SNCE(IDATA,FNG NUMN(1)*I.PNWIMN(I*J)*I)
519 CONTINUE

TYPE 16.1
C
C - Calculate width of fiagers at a dixtamee DIST back free tip.

DIST - 92.
DO 521 1 - 1.9,2
L - IDELTS(IDATA,FGflNV(1)#.DIS?,-2)
M - IDELTS(IOATA FNGNUNIJ.Il,DIST,2)

C - DELTAX - ?WOAT(IATA(L - IDATAU)
C - DELTAY - FOAT(IDATA(L-1) -IDATA(U-I))
C - FNGISI(1) : SURT(DELTAX02 *DELTAY642)

FNGVI(I) *DSTNCE(IDATA.L.N)
DIST - 123.
IF (I .EQ. 7) DIST - 92.
IF (I .EO. 9) I - Io
IWIDTII(I.2) - L-1
IWIDTU(1*3) - N-I

521 CNTINUE
TYPE 10,2

C
C - Calculate curvature of fis~ortipx from # to - DI1ST free tip.
C -First rid det a1efr a:t rld the tips the* fit
C - the aIefntowthatrth lie a stoe slope ad fit.
C
C

DIST - DISTC
00 536 1-.,9 2

525 CALL TANAWI;IDATATA)IGLEDLENG DIST PNGMUN(I).1,6,I2,XP)
CALL LINFIT DLEW,TAGLE.K.L6PE,k5
IF 1AS3) .0T. CRIT) 00 TO 529
DIST - DIST - 2.0
IF (DIST .LT. 4.0) 00 TO 529
00 TO 525

529 CURVE(I) - SLOPE2
CURVEE11) - DIST
DIST a DISTC
TYPE 531 £

531 FORMAT483
536 CNTINUE

TYPE 10.3
C

A-21

C -Celenlate Heandwidth. perimeter sad area 9*12 on is from the tips of
C -the little and isdox fissue. respeatively.

L - IDELTS IDATA,RGU(II,IO-.,-2)
N - OMfZTS4IOATAFWGNUN(7)I,226..2)

C - DELTAX - FLOAT(IDATA(L) - IVATAMNI
C - IELTAY - FLOAT(IDATA(L-I1 - SDATA(W-1))
C - HNDI(ID : SQRT(DELTAX062 + DELTAY*02)

IGNOWID *DSTHCE(iDATALN)
CALL ARPRIN(IDATA,L.NAREAPERIMJ
P1140*1 - AREA
REOPEN - PERIN
IWIDTH(2) *L-I

INIDTH(SII) M -1

C idarea aid perimeter -- terminate hand from point 10cm
C - poximal to the tip of the thumb to a point 13.. proximal to the
C - tp of She little rinser.

L*IDELTS(IDATA.FNGNUND#1 267.,-2)
*IDELTSkIDATA.FNGNUNS9eI26.2)

IMIDTHMI L-1
IWIDTHS 14) *N-1
CALL ARPRIN(IDATA.LNAREAPERNN)
TYPE i0.5

C
C -Print info sad write feature valves to file. Features written in order:
c -tnth. width, ratio(L/Vhadwidth,tinger perimeter and area,
C -ratio (finger A), heedspeimeter sad area. ratio (A/PP.

RATIO *((PNGPRN/205)e2)/(FINGAR/420.)
RATIO2 *((PERIN/2S)ee2.),(AREA/420.)
IF SIFLAG .111. 1) 0O TO 551

C - PRINT 22,SIWIDTSI(I), 1.7)
C - PRINT 22(~IJHI,14,14)-

PRINT 16,(IFILEII), I-.14),SIFILE2(f), 1.1,14)
PRINT is, ANGLES ,ANGLE2
PRINT 1I, IDIS
PRINT 6
PRINT 7
DO 550 l-.IFINGER-1,2

5"0 PRINT 8 (1.11/2 FNNJ() FNGIPI,2),FNGIP(,l),
OPIIGLEN ()i.S,FNGVD(1),20. 5 MU14() /FN(EID ().

CUR VE I) ,CURVES I.)
PRINT 19, IINDIID/20.5 FNGPRN/20.S FINGAR/420..,RATIO
PRINT 23 PERIN/20 S IREA/420.,RAfIO2

55! CALL AS~iGN (I, IFiLE, 152)
DO 600 1-.5

VALVEM) - flitM7E1l2.I)/295
VALUESI.S) *FNOWISD(Ie2-I)/20.S
VALuE41+1e) *FNGLEW(I*2-I)/FNM1DUC62-I

GsO CONTINUE
VALUES 56) - HIHOW 10/20.S

C VALSIE(17) - FNOPRN/20.S
C VALUES IS) - FINGAR/420.
C VALUE(29) - RATIO

VALUES I?) - PEJRIN/20.5
VALUE(I9) - AREA/420.
VALUES 19) - RATSOZ
DO 6e1 1-1,9,2

VALIIE(1#19) - CURVES!
VALUE(1*20) - CURVE(I+I)

Sol CONTINUE
NINFEA * 29
WRITE (1,25) IIAUTI,1,ITRIALSVALUE(J), JclNUIWEA))

C
C - Plot hand perimeter numbering points for tinger tips sad isterdlilal
C - apee.

CALL INIIT(96e)
CALL NOVABSEKOFSTIDATAi(2), ITOPST-IDATA(I))
00 760 1-3 NPTS 2
CALL DRVAiS(iX6FST.IDATA(I1.) , IOFST-IDATA(I))
IF (NPOTP .N4E. 1) 0O TO 710
IP (I WNE. 1IM4TNJ)) GO TO 70B
O TO 711

C - IF (1 .111. LINEJ)) OD TO 7GB
710 IF (I .NE. FNONUN(J)) 00 TO 79B
711 ENWOES2 19 JJ)J

CALL AOU*ST(2.JJ)

C - Plint lie* that intercept finser tips
O TO 1602
DO 1660 K.1 7
CALL NVh(IXOI'ST ITOPST.17ElO(g))
DO 1001 160 .B10

IV - 1I(*RO'(K)I - SLUPEMOLOATUl))
CALL DEVAS(IKO PST oI,ITOFST.IT)

WI CONTINUE
I=G 0DNTINUE
1602 CALL FINITT(0,70B)

A-22

FMldeTION FALFRA (END.IHD)
C - Pnstiok to oeoetot the stte of this so most of tho perimeter
C smnima X ead T of the beginnint sad *ad Of the soest
C Aols go from 0 to Ise them -188 to O

DINUIS loll ENDI) NEADI)
DATA IIADIAN/S7.2iO/ PI/3 1416/
DELTAX - WFAD(2) - wdi)2)
DELTA1 - HEAD(I) - END(l)
IF &DELTAX .NE. 0) 00 TO S
A.PHA - PI/2. e RADIAN
IF (DELTAY .LT. 0) ALPHA a ALPHA A -1.0
GO TO 10O

S ALPHA • ATAN2(DELTAY,DELTAX) 0 RADIAN
le FAL'HA - ALPHA

RETURNEN(D

FUNCTION IMOYX(IXROVX, , IDATALAJM, IDIMCT)
C - Pnsotion to move a disltece I on perimeter from point IX is
C - 4ireotio IDIRCr (0 for forward movo! - for baokward). LAR to
C : fllto teoll whether the ... XIY) as IOin to be terser or smaller
C thee/X. Returns (i) for the now 1(Y) point is the dets list.

DIMENSION IDATA(6000)
J I
L-2
IXPRIN - IX + NOX
IF (IDIRCT .LT. 01 L - -2
IF (LARGER .LT. 0) IXPRI - IX - 11011
IF ALARGER .T. 0) 00 TO SO20 JF- J + L
If (IDATA(J) .LE. IPRIM) 00 TO 100
GO TO 20

so J - J"#L
IF (IDATAJ) .MT. IXPRIN) 00 TO 100
0oTO so

le INOVI - J
RETURN
END

FUNCTION IDELTS(IDATA L.DISTJ)
C - Fsetios to find the Iocation of the XT pelt i the array IDATA thet is
C - the distasce DIST from the X,Y pair polnted to by L. The direotion
C - end increstost of search through the array is determined by J.

DIMENSION IDATA(600) I
FORMAT (X,'ERROR IN IDELTS')

2 FORMAT (X.'IDMLTS: D - ',76.6)
D 2.0

Is I L
DELTAS - 0
X1 - FLOAT(IDATA(I))
Yt - FL.DAT(IDATA(I-I))

20 1• 0 " 1 J

X2 - XI
Y2- YI
XIl FLOAT(IDATA(t))
YI - FLOAT(IDATA(I-I))
DELTAX - X2 - X1
DFLTAY - Y2- YI
DELTAS - DELTAS # SOR (DELTAXee2 4 DELTAT0OZ)
IF (AIS(DIST - DELTAS) .LT. D) 00 TO 100

C - IF (D .LT. 24.) O TO 2S
C- TYPE I
C - Sf0P
2S IF (I .Gf. 1) 00 TO 30

D - 20D
00 TO is

30 17 (I .LT. 600) 00 TO 20

00 TO le
188 IDELTS - I

RETURN
END

FUNCTION DSTNCE(IDATALM)
C - Flotio to aslent*to the distesoo betwees two points, IDATA(L)
C - &ad IDATAIM) usneo S po*t trianular averais.

DINENSION IDATA(60)
XAVEL - AVE(IDATA,L)
RAVEN , AVE(IDATAN)
YVEL - AVEEIDATA,L-1)
TAVEN - AVEEIDATA N-I
DELTAX - XAVEL - AVVa
DELTA! - TAVEL - YAVEM
WfTCE - SQI(DELTAXO*2 * DU.TAyTO2)
RETURN

rr
A1-23

1 '.
. " +L+ " +++" ' * P * + + r + "+ ,,, + .K. +.':.J

FUINCTION AVE(IDATA. I)
C - Poutios to do a five point triangular average and retur. value as
C - AVE.

DINERSIOU IDATA (686)
PAUT2 - PLOAT(IDATA(1-2)100.2
PART3 - PLOAT(IDATA(ll))0.4
PART4 - FLOAT(IDATA(1#2))00.2
PARTS - FL.OAT(IDATA4I4))eO.I
AVE a PART I PAUtT2#PART3*PART4*PART5
RETURN
END

FUNCtION IXTGE!JX.J, I1DATA
C - Function to fied a point with as MY1? etwiveleet to *&other point (IX)
C - J is the starting point for the Vearoh through the array.
C - It JbI0 the search will be bachwoardn through the array.
C - Return (1) for the sew toiat.

0 IM ON0 IDATA(66009
1 2
L 2
IF (J M0. 10) L *-2

2S 1 1-
IF (ASS(IDATAUI - IX) .T. N) 00 TO 166
IF (I .0T. 1) 0O TO 38

00 TO to
36 IF (I ALT. 66669) GO TO 28

N - 201
GD TO te

RETURN
END

SUBROUTINE ARPRIN(IDATA.L,NI,ARZA MINl)
C - towline to oaloolat I area ad periaeter of a parties of the hand with
C - boundries IDATA(L to IDATA(N.

DIMENSION ID)ATA(6008?
AREA G. 8.

U2 a FLOATIIDATAL)
12 - FLOAT(IDATAL-1))
110 28 IeL#2.9.2
XI X 2

X2* FLOATIDATAI)
12 *FLOAT(IDATA(I-1))
611.1*1 - X2 - XlI
DEL1*1 - Y2 - Yl
PERIN % PERIN + SORT(D0TAlXeZ DU..TAT002)
AREA - AREA * D.TAX 6 f(Vl.12)/2.O)

29 CONTNUE
PILTAX a FLOAT(IDATA(L) - IDATAMU)
AREA - AREA * DELTAX e ((FLOATIDATA(-)IDAA(L-)))/2.8)
RETURN
END

REDOUTINE SORTfIDATA, full, NETS)
C -Routine to sort data so that it always starts at the lewer wrist.
C-

DIENUSION IDATA(6683 IDIft6666)
120 J10713T.2 -2

to IP(IDINtI) 1Q. 1) 00 To Ise
lop lF((NPT-1) .T!. 10) 00 TO 268

00 fie I-..NPTS
le IDATAMI 10111(tI)

266 L -
00 210 M~-.NT Motrt with T

IDATAWL * 231(K)
210 CONTINUE

30 220 Ke1.1-2

IDATAWL * DIN(K)
22 CONTINUE

RETURN

A-24

SUBROUINE TANANOU DATATANOWAE.LZAG.DIST.
*MSART , JSTRP M JANGE, NP)

C - Rot:!,:.l o nllteteagefato rad asvdtlos of the

peietr Th plo is -t DIST fao JSTART. The Ieagth of
t h e p e r m e t r f r e c h a a ~ n t s R A N G E , a d t a n ge n ts a r e ca l o u l a t edC for eh stIo a d ta ineva JSTEP. NP is the mumber of anglesC - acltd nlet are stored in TANGLE and the oorreapoadisg

DIMENSION IDATA(6008),TANGLEt 18) .DLENG(109)
DATA P1/3. I416/.RADIAN/S7.296/
L : IDELTS(IDATA.JSTAKT.DIST.-2)
N 1 IDETS (DATA, JSTART. DIST,2)
TWI - 0.
00 10e I-L,VJSTEP

NP -HIP . I '
DX - AVE(EDATAI#JRAWOE) - AVE(IDATA 1)
DY : AVE(IDATA I#JRANOE-1) -AMEIDAtA,1-1)

C DX -FLWATIDA*AU4JKANGE) IDATAM)
C DY - FLOAT(IDATAU'*JRANGE-1) - IDATA(I-1))

TLENG - ISORTDX*12 # DYG*2))/2.0 * TLENG
DLENG(NP) - ILENG
IF (DX .ME. 0.) 0070O20
ANGLE - P1/2. 0 RADIAN
IF (DY .LT. e.0) ANGLE - ANGLE 0 -1.0
0O TO 30

20 ANGLE - ATAN2(DY,DX) 6 RADIAN
39 IF (NP .EQ. 1) ANGLEI - ANGLE

IF (ABStANGLE-ANGLEI) .LE. 190.) 00 TO 40
IF (ANGLEI .GT. 0.0) ANGLE - AN=L # 360.
IF (ANGLEI .LT. 0.e) ANGLE - ANGLE - 360.

40 4ANGLE(NP) - ANGLE
ANGLE I - ANGLE

fee CONTIN"UE
RETURN
END

SUBROUTINE LINFIT(WLENG,TANOM E B113,)
C - Routine to Sir* a lest sqvares fit to data with a lite YNA*BX.
C - x array of data for indepeadest variable
C - a rray of data ror dep !es variable
C -NP number of pairs of data poists

C- SIGAAA stenderddeito of A

C -SIGA s tandard deviation of B
C - linear correlation coefficient
C

DIMENSION TANGLEU09e) ,DLBG(I98)
SUN *FLO)AT(NP)
SMN 0.

SUIIX2 a 0.
SUNY2 - 8.
SUNNY - S.
DO lee I-l.W

311 - DLVIG(I)
VI - TANGLEMI
sunI - SlINK - Xl
SJNY - SIJNY # YI
SUNX2 - SUNXXZ # 1CI**2
SUxY2 - SUMY2 9*0
SUNNY - SIJNIY 0*IY

C
C - Calculate ceefficiests and standard deviations
C

UMTA . SI SIM-.SM902ee

A a (SUNJCYSMI-SJNXSUNY)/TA
C - NP -2
VARNGE f SUN2A02SlU.*2*S1lS2-20

I EAS1JN1.SStiNX1Y-A66SUN))/C
SIONAA - SlMRTYARMS111X2/1EL.TA)
SIIISAB -SQRT(VARMCEOSUN /DMTA)
a - I IPSUWXY-SJUKSUNYI /SORT WUETAe t5JSIJIJYW2-SIJIJTe2))
RETURN

A-25

moil. ,' A .. ~ *.

Appendix B

DOCUMENTATION OF LINEBYLINE

Gregory K. Myers
SRI International

B-1

I INTRODUCTION

This algorithm is taken from "Image Processing Algorithms for In-

dustrial Vision," a report by Gerry Agin of SRI International. The

algorithm is referred to as "connectivity analysis." It segments a

binary image into "blobs" (connected regions) of the same "color"

(gray level). Only one pass is made through the image, and only one

line is accessed at a time (hence the name "LINEBYLINE"). Features of

each blob are computed, such as the area, center of gravity, bounding

rectangle, and perimeter points. This document explains the concepts

used in LINEBYLINE and provides an example of processing.

II RUN-LENGTH CODING

The first step in processing is the run-length coding of the binary

image. Each line of the binary image is converted into a series of run-

length segments. A "l" denotes the color of "object" and "0" denotes

the color of "background."

To illustrate how run-length coding is done, let us consider the

following 8 x 8 binary image:

Column number: 1 2 3 4 5 6 7 8

bbbbbbbbbb
Row number: I b 00011100 b

2 bll0OlllOb
3 bOl011011b

4 b011110Olb

5 bOlllO001b
6 bOl011011b
7 b01OOlll0b
8 bOOOOOl00b

bbbbbbbbbb

(Note: "b" denotes an implicit "0" beyond the margins of the image.)

B-3
'fS P" B -M FL

The algorithm for run-length coding examines each pixel of the row

in turn and records the column number of any element that differs from

follo thdeelstoe. Fo thiasmreaon ifeed the last colmnt fd soeoar

itslo prdeeslso. Ao 0hi isasueaton preed the frst lmnt and toear

ticular row contains a 1, a transition will be recorded in column 9.4

In general, there will be twice as many column numbers recorded as

there are segments of contiguous Is in the row.

The result of run-length coding our example is as follows:

Row 1: Col. 4,7
Row 2: Col. 1,3,5,8
Row 3: Col. 2,3,4,6,7,9

Row 4: Col. 2,6,8,9
Row 5: Col. 2,5,8,9
Row 6: Col. 2,3,4,6,7,9
Row 7: Col. 2,3,5,8
Row 8: Col. 6,7

Later in this paper, we will refer to the run-length segments that

make up a line or row. These are contiguous sequences of pixels of

either color (0 or 1). For example, row I has exactly three run-length

segments. The first segment is all Os and extends from minus infinity

up to (but not including) column 4. The second segment is is runs from

column 4 to (but not including) column 7. The third and last segment

consists of Os from column 7 to plus infinity. Because every row must

start and end with 0, there is always an odd number of run-length seg-

ments in any line.

The starting and ending column numbers of each run-length segment

are stored in a linked list for later processing by the connectivity-

analysis procedures. When the connectivity analysis for all the run-

length segments in a line has been completed, the run-length segments

are deleted. The creation of run-length segments from a binary image

line could be easily performed in hardware.

B-4

III INTRODUCTION TO CONNECTIVITY ANALYSIS

The purpose of connectivity analysis is to separate a binary image

into connected components. We call these connected components blobs.

A hole is a special case of a blob entirely surrounded by another blob

of the contrasting color. When connectivity analysis is applied to the

8 x8 example presented in the previous section, the result contains

three components: the background (component 0), an "object" (component 1),

and a hole (component 2). The three components are shown below.

0 00+ 0 . . .1010 . . . + ..

+ + 0 011. . 1 1 11 +4+. + + +

0 +0 ++4. + + +.+112.11
0O.++.+.. .+ .1 11 +.1++2

04+40. . . .1 1. +1 . +22+

000 0++0 0 . . 11 .+. . ++

All pixels in the background are assigned the same region number, even

though in the 8 x 8 figure the background appears to consist of four

separate regions. This is because we assume the image is embedded in

an infinite field of Os. Any region of Os that touches the margin of

the picture will therefore be classified as background.

The algorithm extracts and identifies connected components, com-

putes useful feature information, and requires buffering of no more

than one line of data. This section describes the general procedure

for connectivity analysis. Section IV gives some details that -7

skipped in this section for the purpose of explaining the process more

easily.

Connectivity analysis, as implemented here, makes use of a data

structure, which we call the active line, to keep track of the process-

ing. The active line consist of

*A linked list of segment descriptors. Each segment descriptor
contain the starting and ending column numbers of a run-length
segment, the component number to which the segment belongs, and

B- 5

a pointer to the next segment descriptor. A dummy segment
descriptor gives the ending column number of the final run-
length segment.

* A pointer to the current segment being processed.

Before processing any data, the active line is initialized to con-

tain a single segment descriptor, representing the background. Before

processing any row of run-length data, the pointer to the current segment

pointer must be initialized to point to the first segment. As we start

to process our example image, the state of affairs is thus:

Image so far: b b b b b b b b b b

Active line:
Start column -infinity +infinity
Component number 0 dummy

Current segment:

In the first row of example data, transitions were found in columns

4 and 7. This implies that the row consists of three run-length segments:

Os from -infinity to (but not includLng) column 4, ls from column 4 to

(but not including) column 7, and Os from column 7 to +infinity. After

processing the first row we will want the data structure to represent

those three segments.

One procedure will examine each run-length segment in turn. Each

segment will take its turn as the new segment, represented by its start-

ing and ending column numbers. The new segment must be matched against

the partially completed analysis embodied in the current line. In par-

ticular, we must determine whether the new segment overlaps the current

segment, that is, the segment of the active line pointed to by the

current segment pointer. Three cases are possible:

B-6

- ., ,

Case 1:

The two segments do not overlap because the new segment is to the
right of the current one (that is, the starting column number of
the new segment is larger than the ending column number of the
current segment).

Current segment: XXXXXXXX
New segment: XXXXXXXX

Case 2:

The two segments do not overlap because the new segment is to the
left of the current one (that is, the ending column number of the
new segment is smaller than the starting column number of the
current segment).

Current segment: XXXXXXXX
New segment: XXXXXXXX

Case 3:

Neither Case 1 nor Case 2 obtain, and the segments overlap.

Current segment: YXXXXYXX

New segment: XJUUUUUUOUX

Different actions must be taken in each of the three cases. We will

explain each case as it occurs in the course of analyzing our example

image.

The first segment of the new row goes from -infinity to 4. The

current segment pointer points to the first segment in the active line,

which goes from -infinity to +infinity. When these two segments are

compared, we find that Case 3 applies: the two segments overlap.

Action on Case 3:

Copy the start column number from the new segment to the current
one. Then advance the current segment pointer to the next segment
in the active line.

Copying the starting number of the new segment (-infinity) to the

current segment results in no change in the data structure, because

-infinity was there to begin with. The current segment pointer is ad-

vanced to the next segment descriptor in the active-line list. After

processing the first segment in the first row, the active-line data

structure looks like this:

B-7

Image so far: b b b b b b b b b b
New segment: b 0 0 0

Active line:
Start -inE +inf
Component 0 dummy

Current segment: I

We now analyze the next segment. This new segment runs from

columns 4 up to (but not including) column 7. The current segment

pointer now points to the dummy segment descriptor, which starts at

+infinity. Therefore Case 2 applies: The new segment does not match

any existing segment in the active line. Room must be made in the data

structure for it.

Action on Case 2:

Insert two new segments descriptors (call them A and B) in the
active line before the current segment. Let the current segment
pointer point to A. Copy the ending column number of the new
segment to the start column number of B. Choose an unused number
for a new component and let it be the component number for A. Copy
the component number from the'segment preceding segment A, to B.
Now proceed as in Case 3.

The situation after processing the second segment In the first row

is thus:

Image so far: b b b b b b b b b b
bO0O0O

New segment:111

Active line: (A) (B)
Start -inf 4 7 4-mE
Component 0 1 0 dummy

Current segment:

Two new segment descriptors were inserted in the active line. Descriptor

A represents part of a newly discovered blob in the image; it is assigned

component number 1. Descriptor B extends the background down the right

side of the new blob.

B-8

Descriptor B takes its starting column number from the ending

column number of the new segment (7) and its component number from the

segment before A (0). Having created a new pair of segment descriptors,

we can proceed to match the new segment to segment A by performing the

Case 3 action. The starting column number of the new segment (4) is

copied to descriptor A, and the current segment pointer is advanced to

point to segment B.

The third (and last) segment in the first row runs from column 7

to +infinity. This will be matched against the current segment, which

also runs from 7 to +infinity. This is another Case 3 overlap, and the

data structure after processing that new segment will be:

Image so far: b b b b b b b b b b
bO0O 0l 1

New segment: 0 0 b

Active line:
Start -inf 4 7 +inf
Component 0 1 0 dummy

Current segment:

This concludes processing of the first row.

The second row has transitions at 1, 3, 5, and 8, or five segments

to be processed. The current segment pointer is reset to point to the

first active segment.

The first segment of this row runs from -infinity to 1. When it

is matched to the first segment in the active line, a Case 3 overlap is

discovered. The appropriate action (extending the segment representing

the background) will be performed.

The next segment runs from column I to (but not including) column 3.

When it is matched against the current segment starting at column 4,

Case 2 applies. The newly discovered blob is assigned component number 2,

producing the following situation after processing the second segment:

B-9

Image so far: b b b b b b b b b b
bO0Q00i11l10O0b
b

New segment: 2 2

Active line: (A) (B)
Start -inf 1 3 4 7 +inf
Component 0 2 0 1 0 dummy

Current segment: I

The last three segments on this second row all produce Case 3 over-

laps when they are matched against the active line. At the conclusion

of processing the second row, the following data structure obtains:

Image so far: b b b b b b b b b b
bO0O00l11 10O0b
b 22 00 11 1

New segment: 0Ob

Active line:
Start -inf 1 3 5 8 +inf
Component 0 2 0 1 0 dummy

Current segment:

Row 3 has transitions at columns 2, 3, 4, 6, 7, and 9. Matching

the seven segments of this row will result in four Case 3s, a Case 2,

and two more Case 3s. After processing the third row the following

will be the state of the data structure:

Image so far: b b b b b b b b b b

Active line:
Start -inf 2 3 4 6 7 9 +inf
Component 0 2 0 1 3 1 0 dummy

Current segment:

B-10

In the fourth row there are transitions at columns 2, 6, 8, and 9,

for a total of five segments. The first two of these result in Case 3

overlaps. But when we match the third segment of the fifth row (which

runs from column 6 to 8) with the next segment of the active line

(running from column 3 to column 4) we discover that Case 1 holds. Here

is the situation as we discover the fact:

Image so far: b b b b b b b b b b
b00011100b
b22001110b

b 0 2<0>1 1(3)1 1 b
b 0(2 2 2 2)

New segment: (0 01

Active line: (A) (B)
Start -inf 2 3 4 6 7 9 +inf
Component 0 2 0 1 3 1 0 dummy

Current segment:

The current segment in the active line, marked by "< >" above, is

not matched by any segment in the new row. The new segment, marked by

")" must eventually match the segment denoted by "()". We must

delete the unmatched segment "< >" from the active line. Furthermore,

the previous segment, marked by "()", forms a "bridge" between com-

ponents 1 and 2. We must merge the two components.

Action on Case 1:

Consider the segment in the active line before the current one
(call it "A") and the segment after the current one (call it
"B"). If the component numbers of A and B are different, then
merge the two components by changing all instances of B's component
number in the active line to A's component number. Delete the
current segment and segment B from the active line. Let the cur-
rent segment pointer point to the segment after B. Now go back
to the beginning of the entire matching procedure, matching the
new segment against the updated active line.

By this procedure, we merge components 1 and 2. The merging changes

the component numbers of the fourth and sixth segment descriptors in the

active line from 1 to 2. The current segment and segment B get deleted,

and the current segment pointer is advanced to point to the segment

B-Il

starting at column 6. After we have taken these steps, the data struc-

ture looks as follows:

Image so far: b b b b b b b b b b
b00 02220 0b
b 2200222 0b
b02 022 322b
b02 222

New segment: 3 3

Active line: (A)
Start -inf 2 6 7 9 +inf
Component 0 2 3 2 0 dummy

Current segment:

Now the new segment may be matched anew against the active line and

current segment. This time around, the match is Case 3, as are the re-

mainder of matches in this fourth row. After finishing this row, the

state of the data structure is as shown below:

Image so far: b b b b b b b b b b
b 00022200b
b 22 00222 0b
V 02022 32 2b
bO 222233 2b

Active line:
Start -inf 2 6 8 9 +inf
Component: 0 2 3 2 0 dummy

Current segment:

In the fifth row, there are five segments with transitions at

columns 2, 5, 8, and 9. Only Case 3 overlaps occur.

,
The "image so far" is not part of the data structure; it only is pre-
sented as an aid in visualization of the connectivity-analysis process.
We have changed all is in the image to 2s to indicate, conceptually, the
merging of the two components.

B-12

The sixth row has transitions at columns 2, 3, 4, 6, 7, and 9. The

third segment (from columns 3 to 4) will generate a Case 2 match, the

others will all be Case 3. The new component created by the Case 2

match is assigned number 4. Here is what the data structure looks like

after processing that row:

Image so far: b b b b b b b b b b

b00022200b
b 2200222 0b
b02022322b
b02 2223 32b
b02 22333 2b
b0 242232 2b

Active line:

Start -inf 2 3 4 6 7 9 +inf
Component 0 2 4 2 3 2 0 dummy

Current segment:

In processing row 7, with transitions at 2, 3, 5, and 8 a Case 1

situation occurs. The analysis of component 3 is complete: Its segment

descriptor disappears from the active-line data structure. The two

segments on either side of component 3 already have the same component

numbers, so no merging is necessary:

Image so far: b b b b b b b b b b

b00 02220 0b
b 2200222 0b
b02022322b
b02 2223 32b
b02223332b
b024 2232 2b
b 0244222 0b

Active line:

Start -inf 2 3 5 8 +inf
Component 0 2 4 2 0 dummy

Current segment: I

B-13

In row 8, there are transitions at columns 6 and 7. Another Case I

situation occurs here, merging component 4 with component 0 (the back-

ground). Here is the situation after we have processed the eighth row:

Image so far: b b b b b b b b b b
bOOO22200b

b 2200222 0b
bO202 2 322b
b02 22233 2b
b02223332b

b02022322b
bO2002220b
bOO000200b

Active line:
Start -inf 6 7 +finf
Component 0 2 0 dummy

Current segment:

After the last row of image data, another row of all Os will com-

plete the analysis, removing component 2 from the active line.

We have engaged in a little oversimplification in order to present

the basic ideas behind connectivity analysis as plainly as possible.

In the next section we will fix the algorithm to operate correctly in

all cases. But before reading on, turn to the beginning of this section,

where we presented the three components we wish the algorithm to extract.

You may verify that the results we have obtained are what was intended

except that different numbers were assigned.

IV CONNECTIVITY ANALYSIS IN DETAIL

The simplified algorithm presented in the previous section is de-

ficient. It has errors, and it doesn't compute any features of the blobs

or any perimeter lists. In addition, processing of some borderline

cases of overlapping segments was not adequately described. At the end

of this section the complete algorithm with its amendments and corrections

will be presented.

B-14

A. Handling Some Special Cases

Let us finish the processing of our test image. To complete the

analysis, a last row of Os running from -infinity to +infinity is added

to the active-line data structure, leaving us with the following situa-

tion:

Image so far: b b b b b b b b b b
bOG 02 22 0G0b
b 22 00 22 2G0b
b0 2 02 23 22 b
b 02 2 22 3 32b

New segment: b bb b bbb bb b

Active line:
Start -inf 6 7 +inf
Component 0 2 0 dummy

Current segment:

We have just processed a line with nothing in it, but the active

line incorrectly points to a segment there. It takes a Case 1 match

between segments to delete component 2 from the data structure, but

there is nothing left to process. What we must do is to check at the

end of each line whether the current segment pointer points to the dummy

segment at the end. If it does not, then the Case 1 processing must be

performed until the current segment pointer does point to the last seg-

ment.

A second error concerns the merging of two regions when a "bridge"

connects them. The rule for Case 1 states that if the two component

numbers are different, then the number on the right replaces the number

on the left everywhere else in the active line. However, if the com-

ponent number on the right happens to be the background, the replacement

would renumber the background. We wish the background to be always

component number 0 and must modify the renumbering rule accordingly.

B-15

B. Blob Descriptors

The main reason for doing connectivity analysis is to obtain inf or-

mation about the components we find thereby. The information we have

derived related to color, location, area, perimeter, and points to other

components that surround, neighbor, or form holes in the component we

are examining. The algorithms for deriving such information will be

described later in this report. Such information is stored in a blob

descriptor for each component.

We must modify our algorithm description to include the use of blob

descriptors. When a new component is started as a result of Case 2

processing, a new blob descriptor must be created. When segments are

removed from the active line in Case 1 processing, we must keep track

of the blob descriptors that are removed. Several segment descriptors

in the active-line data structure can have the same component number;

hence they can point to the same blob descriptor. Therefore, when a

segment descriptor is removed as the result of Case 1 processing, the

algorithm must check to see if other segment descriptors in the active

line refer to the same component. If this is the last reference to

that component, its processing is finished.

At this point, the blob descriptor describes a connected component

whose connectivity has been completely determined. Furthermore, the

extraction of blob features and perimeter lists is complete. We have

more than one option as to what to do with the blob descriptor. We can

pass the address of the completed blob descriptor to an application-

dependent subroutine that will do further processing, take some action

depending on what was found, or delete the blob descriptor to make itsN

memory space available for other blobs or other purposes. Alternatively,

the address of the blob descriptor can simply be added to a list of

isolated blobs in the image and further processing will be deferred

until the entire picture is analyzed. In the current implementation the

features and perimeter lists of the blob are written to output files,

and the blob descriptor is recycled to save memory space.

B-16

C. Treatment of Diagonally Adjacent Pixels

Two pixels belong to the same component if and only if there exists

a path, along adjacent elements of the same color, from one pixel to the

other. When dealing with points on a rectangular grid, it is reasonable

to ask whether diagonal points are adjacent. If diagonal points are to

be considered adjacent, then the components of an image are said to be

8-connected, since each pixel has eight connected neighbors. If diagonal

points are not considered adjacent, then the components are called 4-

connected. Our connectivity algorithm, as presented so far, finds the

4-connected components of an image. If we were to analyze the image of

a checkerboard, then each square of the image, black or white, would be

a separate component.

It would be desirable to modify the connectivity algorithm so it

has the property that every component (except the background) is en-

tirely enclosed by one and only one component, which is of the opposite

color. Then every boundary between two regions is a closed curve that

separates an enclosing region from an enclosed region. The components

of a scene thus analyzed may be arranged hierarchically, each component

having a single superior (encloser) and zero or more inferiors (holes

or enclosed regions).

A way of achieving this is to specify that all white cells (1s)

are 8-connected and that all black cells (0s) are 4-connected. With

such a convention, the image of a checkerboard would be analyzed as a

number of individual white squares, all embedded in a single black

region (the background). To implement this requires modifying the

tests for overlap that determine Case 1, 2, or 3. The modification has

to be such that one set of tests applies when a segment of ls is being

considered and a different set of tests applies for a segment of Os.

D. The Connectivity Algorithm

We shall now consolidate what has gone before. The algorithm

will be presented in an informal fashion. Operations such as creating

and modifying lists, or obtaining storage for a descriptor are imple-

mentation details that will not be mentioned here.

B-17

First, some definitions.

" Segment descriptor is an array or a block of data that contains
four items: starting and ending column numbers, a pointer to a
blob descriptor, and a pointer to the next segment descriptor
in the active line.

" The active line is a linked list of segment descriptors. The
current segment pointer points to a segment descriptor on this
list. The active segment is the segment descriptor pointed to
by the current segment pointer.

0 A blob descriptor is a record of data that contains at least one
item: a color, which may be either 0 or 1. Additional itmes
in a blob can be used for feature analysis, as will be described
later. A component number is a number that identifies a blob.

To process an image:

" Obtain a blob descriptor to represent the background. Set the
color word of the background blob to 0.

" Initialize the active line to contain two segment descriptors.
The first segment descriptor should have a column number smaller
than zero and a component number pointing to the background
blob. The column number of the second segment descriptor should
be a large positive number, a number greater than the number
of columns in the image. The component number of the second
descriptor is irrelevant.

" Process each row of the image, as described below.

" Finish by processing an extra row consisting of all zeros.

To process a row:

• Initialize the current segment pointer to point to the first
segment descriptor in the active line.

* Obtain the run-length representation of the row (see Section
II). The run-length data should start with a negative number
and end with a large positive number.

0 For every pair of adjacent numbers in the run-length data, in
turn, call the segment-processing operation (defined below).

* While the current segment pointer does not point to the last
segment in the active line, perform the deletion operation (de-
fined below). Repeat this step until the current segment pointer
does point to the last segment.

In this context, the word while refers to a condition to check and an
action to perform. It means to repeat the action zero or more times
until the condition is not true.

B-18

To process a new segment, given a starting column number and an

ending column number:

" While the starting column number is greater than the ending
column number of the current segment in the active line, do the
deletion operation (defined below). (This is Case 1.)

" If the ending column number is less than the starting column
number of the current segment, perform the insertion operation
(defined below), passing on the starting and ending numbers of
the segment. (This is Case 2.)

* Do feature extraction for Case 3 processing.

" Copy the starting and ending column numbers of the new segment
to the starting and ending column numbers of the current segment.

" Advance the current segment pointer to point to the next segment
descriptor in the active line.

To perform the insertion operation, given starting and ending

column numbers:

* Obtain the component number of the segment descriptor preceding
the current segment. Call that component the surrounding com-
ponent.

0 Obtain a new blob descriptor. Call it the new component. Set
the color word of the new component to the opposite of the color
of the surrounding component.

0 Obtain two new segment descriptors and insert them in the active
line immediately before the current segment, calling the first
segment "A" and the second "B." Segment A receives the new com-
ponent number and the starting column number. Segment B re-
ceives the surrounding component number and the ending column
number.

To perform the deletion operation:

Call the component number of the current segment the terminated
component. Call the component number of the segment preceding
the current one the left component and the component number of
the segment following the current one the right component. Call
the left component the replacing component and the right component
the replaced component. If the right component points to the

background, then call it the replacing component and the left
component the replaced component; otherwise, call the left
component replacing and the right component replaced.

* Do feature extraction for Case 1 processing.

* If the replacing component and the replaced component are dif-
ferent, then find all instances of the replaced component number
in the active line, and change them to the replacing number.

B-19

0 Delete the current segment and the segment following the cur-
rent one from the active line. Let the current segment pointer
point to the first segment after the deleted one.

0 Search for instances of the terminated component number in the
active line. If there are no remaining instances, call
application-dependent subroutines, as appropriate, passing the
address of the terminated component's blob descriptor.

V EXTRACTION OF FEATURES

The preceding sections outlined a procedure for isolating connected

components (blobs) from one another in an image. The results of the

analysis are a number of blob descriptor records that contain information

about the blob. Each blob descriptor consists of several features or

characteristics of interest.

A. Color

The simplest feature is color. The color of a blob will be 0

if the blob is black and 1 if it is white. If the color of the background

is appropriately set up at initialization time, then the following will

ensure that each blob descriptor subsequently created has the correct

color: whenever a new blob descriptor is created (Case 2) obtain the

color feature of the surrounding blob and store the opposite color in

the appropriate place in the new blob descriptor.

B. Parent,. Child, and Sibling

An important class of features describes inclusion relationships

among blobs. Because we have been careful in the way connections are

made between diagonally adjacent pixels, we can guarantee that every

component (except the background) has one and only one surrounding

component blob. We call any blob's surrounder its parent, any holes

(or blobs enclosed by this one) children, and other blobs enclosed by

the same parent siblings.

At blob creation time (Case 2) a pointer to the surrounding blob

descriptor can be stored as the new blob's parent feature. The child

B-20

feiture of the new blob is set to 0. We must also record the fact that

the parent blob has an additional child. There is only a single entry

in the blob descriptor for the child feature. The child feature of any

blob points to the most recently created surrounded blob; the sibling

feature of that most recently created child points to the next most

recently created child, and so forth. The procedure to follow in Case 2

processing is as follows: Copy the child feature of the surrounding

blob to the sibling feature of the new blob. Set the child feature of

the surrounding blob to point to the new blob.

Case 1 processing frequently causes two blobs to be merged into

one. Topological considerations guarantee that the two blobs to be

merged will have the same color feature and the same parent. But to

preserve the integrity of the parent-child-sibling links, several

actions must be performed. In each of the children of the replaced blob,

the parent feature must be changed to point to the replacing blob. All

the children of the replaced blob must be concatenated onto the sibling

list of the children of the replacing blob. The pointer to the replaced

blob itself must be removed from the sibling list that includes both

the replaced and the replacing blobs. Finally, if the common parent of

the two merged blobs points to the replacing blob as its child feature,

that child feature must be replaced by the contents of the sibling

feature of the replaced blob.

A greal deal of bookkeeping overhead is eliminated by recording only

parent relationships. The children and siblings can be regenerated

from the list of parent relationships. In the current implementation of

LINEBYLINE, the parent relationship is not computed because it is not

used by subsequent programs.

C. The Bounding Rectangle

The bounding rectangle of a blob is specified by the minimum and

maximum values of x and y over the blob, It is easily extracted as

follows: when a blob is created (Case 2), copy the current value of y

(which is constant across an entire line of input) to the new blob's

ymin feature. At the same time place the starting column number (of the

B-21

contrasting run-length segment) in the new blob's min feature and the

ending column number in the blob's ymin feature.

For each run-length segment added to a blob (Case 3), set the xmin

feature to the smaller of (1) the starting column number and (2) the

previous value of the xmin feature. Do the analogous operation for the

xmax feature and the ending column number. The ymax feature is set to

the current line number.

When two blobs are merged as a result of Case 1 processing, the

ymin, xmmn, and xmax features of the replacing blob must take the ex-

treme values of the two blobs to be merged.

D. Area and Center of Gravity

The area of a blob is set to 0 when the blob descriptor is created.

When a new line segment of the blob is processed, the number of pixels

in the segment is added to the area of the blob. When two blob, are

merged, their areas are added together.

The center of gravity (CG) is recomputed after each new line segment

is added to the blob. The updated CG is a weighted average of the CG

of the new line and the CG of the previously processed portion of the

blob. The weights are proportional to the areas of the new line segment

and the previously processed portion, respectively. When two blobs are

merged, a weighted average of the two CG's is computed in a similar

manner as above.

E. Perimeter Lists

Associated with each inked blob is a set of perimeter points. Be-

cause each line of the image is processed sequentially, the perimeter

points are obtained in a somewhat haphazard manner. During processing,

the perimeter of a simple convex blob has two uncompleted ends: One at

the starting column of the active line segment (the left end), and one

at the ending column of the active line segment (the right end). The

perimeter points are stored as a singly linked list called a perimeter

section. The right endpoint is at the beginning of the list, and the

B-22

left endpoint is at the end of the list. When there is more than one

active line segment corresponding to the same blob, one perimeter section

is associated with each active line segment. The perimeter sections

are arranged as a doubly linked ring. This structure is illustrated

below, using component 2 in the previous example after six lines of

processing.

The structure of the perimeter section records and perimeter point

records in the illustration above are shown here:

left
right line
previous section column
next section next point

Perimeter section record Perimeter point record

When each new line of pixels is processed, the lists of perimeter

points are modified according to which case applies. In all cases

perimeter lists are compiled for inked blobs only.

Case 3 requires the simplest processing. When a new line segment

is added to an inked blob, the left end of the associated perimeter

section and the right end of the next perimeter section are extended.

An example is shown below:

B-23

V_

Image so far: b b b b b b b b b b
b~lll] ll b -
blillll il b"
bi Ol0 11 bi

b
New segment: (I 1 1]

Perimeter lists [1 2
before new seg-
ment is added:

_3

Perimeter lists 1
after new seg- 8 7
ment is added:

For Case 2 (insertion of a new segment) there are two subcases.

Subcase A occurs if the new segment has the color ink; otherwise Sub-

case B occurs. In Subcase A a new perimeter section for the new blob is

created and will contain all of the points in the new segment. An

example is shown below.

Image so far: b b b b b b b b b b
bOO 00000 Ob
bOO

New segment: [i 1 1]

Perimeter list after 2]f V
new segment is added:

In Subcase B the perimeter section of the surrounding segment is

split into two perimeter sections. An example is shown below.

B-24

Image so far: b b b b b b b b b b
bOlllllO~b
bOllillll~b
b 0 1 1

New segment: [0 0]

Perimeter lists
before new seg- 3 234567654

ment is added:
g3

Perimeter lists

after new seg-
ment is added:

For Case 1 (deletion of a segment) there are also two subcases.

Subcase A occurs if the deleted segment has the color ink; otherwise

Subcase B occurs. In Subcase A two adjacent perimeter sections of the

terminating blob are merged. If the terminating blob has only one

perimeter section, its left and right ends are joined, and processing

of this blob is finished. An example is shown below.

Image so far: b b b b b b b b b b
b 001111 00b
b 0111110 0b
b

New segment: [0 0]

Perimeter lists 3
before new seg-
ment is added:

Perimeter lists
after new seg-

ment is added: *No
B-25

In Subcase B the perimeter sections associated with the replacing

and replaced components are merged. If the replacing and replaced

components belong to different blobs, the two blobs will be merged and

the two rings of perimeter sections will be merged into one ring. An

example is shown below.

Image so far: b b b b b b b b b b
b 11 00 0 11 0ObbllOOllOb

b
New segment: [I 1 1111]

Perimeter lists 2
before new seg-
ment is added: I

Perimeter lists1123-
after new seg-
ment is added:

To save space during processing of the image, and to store the

completed perimeter lists in less disk space, the perimeter lists are

periodically packed. The variable LINEGROUP controls how often the

lists are compressed (the words "pack" and "compress" mean the same

thing). For example, when LINEGROUP = 25, compression occurs at lines

25, 50, 75, etc. Those points in the list that previously have been

compressed are skipped. When a perimeter list has been completed and

is ready to be written to disk, it is unpacked and then repacked if

the Boolean variable FINALPACKING is true. If FINALPACKING is false,

the perimeter list is only unpacked. Currently, the value of FINALPACKING

is specified by the user at the beginning of LINEBYLINE.

Each unpacked perimeter point consists of two 16-bit integers with

values between I and 512. One integer is for the line number Y and the

B-26

second integer is for the column number X. Compression is achieved by

converting the perimeter information from a series of (Y,X) points to a

starting (Y,X) point and a series of directions from one point to the

next. The starting point has the same format as an unpacked perimeter

point, except that 512 is added to the column number. Therefore, a

column number greater than 512 identifies that point as the beginning of

a series of compressed points. Because the perimeter is 8-connected, there

are eight possible directions indicating the positions of subsequent

perimeter points. They are numbered from 0 to 7 and are assigned as

follows:

Change in X

-1 0 1

-1 3 2 1
Change in Y 0 4 0

1 5 6 7

For example, if the perimeter list of the last example above (deletion

of a segment, Subcase B) were to be compressed starting with the point

(3,1), the direction to the next point (2,1) would be 2; the direction

from (2,1) to the next point (1,1) would be again 2; and the direction

from (1,1) to the next point (1,2) would be 0.

Each of the eight directions can be represented as a 3-bit code

(000 - 0, 001 = 1, 010 = 2, ..., 111 - 7). Five direction codes fill

15 bits of a 16-bit word. The 16th bit (the sign bit) is set equal to 1

to indicate that the word contains compressed perimeter points. Each

set of five direction codes is stored alternately in the line and column

locations of the perimeter point record. If we continue the example,

the first five directions would be 2, 2, 0, 6, and 7. The would be

coded and placed in a 16-1,Ut word as:

1 111 1 1 0 0 0 0 0 1 0 0 1 0

16 15 14 13 12 111 0 9 8 7 6 5 4 3 2 1

B-27

This ward is interpreted as the two's complement integer -1756 octal,

or -1006 decimal. The second five directions are 0, 1, 1, 0, and 5.

Their bit representation is:

1 1 01 0 00 0 01 0 01 00 0

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

This is interpreted as -27670 octal, or -12216 decimal. Hence, the

first 11 perimeter points are compressed into the space of two perimeter

point records as follows: (3,513), (-1006,-12216).

Compression of groups of less than 10 points is not attempted.

Therefore, during processing, the list of compressed points is inter-

spersed with uncompressed points. In addition, there are usually a

few uncompressed points at the end of the list. In our example, the

12th point, (3,8) remains uncompressed. The completely compresned

list is therefore:

18 [-122 6 1 513 1 1 j-J

The unpacking process is just the reverse of the packing process.

The column number of each perimeter point is examined. If it is greater

than 512, the start of a series of compressed points has been detected.

Subtracting 512 from the column number results in the (Y,X) coordinate

of the starting point. The sign of the column number of the next

perimeter point is examined. If it is less than or equal to 0, then

compression of 10 points has been detected. The locations of these

points are recomputed from the 3-bit direction codes that are extracted

from the two 16-bit words. This process continues until a perimeter

point record with a column number greater than 0 is encountered.

B-28

L -.- "I ~.'T

VI HIERARCHY OF PROCEDURES

This chart shows the hierarchy of procedures within LINEBYLINE.

All of the procedures that are called by each procedure are indented

and listed below.

LINEBYLINE
PACKPERIMS

PKPERIMS
COMPRES SED
UNPACKPERIMS

UNPACK5
DIRPOINT

DELETEPERIMS
NEWPERIM
DIRECTION

GETLINE
ENDOFBLOCK

SETLINE
CREATERUNLENGTHS

ADDRUNLENGTHS
PROCES SLINE

DELETESEGMENT
ADDLEFTPERIMPOINT

NEWPERIM
ADDRIGHTPERIMPOINT

NEWPERIM
RECORDBLOB

WRITEPERIMS
WRITEPOINTS

PKPERIMS
(see above)

COUNTANDWRITE
COMPRESSED
UNPACKPERIMS

(see above)
WRITEPOINTS

(see above)
DELETEPERIMS

WRITEBLOB
DELETEBLOB

INSERTSEGMENT
NEWBLOB
ADDRIGHTPERIMPOINT

(see above)
CASE3PROCESSING

UPDATEPERIMS
ADDLEFTPERIMPOINT

(see above)
ADDRIGHTPERIMPOINT

(see above)

B-29

VII INPUT IMAGE FORMAT

The binary image that is read by LINEBYLINE is 512 x 512 pixels.

There are 8 pixels per byte (each pixel is one bit). Therefore, one

line of data occupies 64 bytes, and the entire image occupies 512 x 64 =

32K bytes on disk. The data is read one byte (one character in PASCAL)

at a time.

However, there is one small difference due to the PDP 11/40 version

of PASCAL. The bytes are stored on disk in blocks of 512 bytes. The

PASCAL I/O processor interprets a block boundary as an extra byte.

To compensate for this inaccuracy, the LINEBYLINE software skips an

"imaginary" byte once every 512 times (when the Boolean function

ENDOFBLOCK is true). On most computer systems, this would not be neces-

sary.

B-30

I•.,

Appendix C

ANNOTATIONS FOR THE SEPARATE SPSS RESULT PACKAGE
(Submitted Separately)

C-1

Appendix C

ANNOTATIONS FOR THE SPSS RESULT PACKAGE

(Submitted Separately)

The printout of an SPSS analysis contains several parts. Following

is a description of each part with the page number of the listing on

which that part of the printout begins. Preceding the actual output,

some initial information is listed, including the control file used

to run SPSS and the data that are to be read by SPSS. These data are

ordered as a sequence of trials. The numbers represent: Subject code

(1-30), session number, trial number, and 29 feature values.

" Page 1: SPSS description; format of the data that are to be
read in.

" Page 3: A partial list of the data that were read in. Each
trial is listed, but only five selected feature values are
listed.

* Page 9: SPSS options used.

* Page 10: Number of trials per subject (group).

* Page 10: Feature-value means for each subject.

* Page 12: Feature-value standard deviations for each subject.

* Page 15: Wilk's lambda and univariate F-ratios for each feature.

Each of these numbers is related to the discriminating power of
the specific feature. For Wilk's lambda, the smaller the
number, the better is the discriminating power of that feature.
The opposite is true for F-ratios: The larger the F-ratio, the

greater is the discriminating power of that feature.

" Page 17: Within-groups correlation matrix. This is similar to

the covariance matrix, except that each feature mean is first
normalized to mean - 0 and standard deviation = 1 before calcu-
lation of the covariance. A number in this matrix that approaches

1 indicates a high degree of correlation between those two

features..

" Page 19: Prior probability of finding any particular subject
within the population. A priori, this probability was set to
be equal for each subject.

c-3 0 IS= XAMOT F21M

* Page i: iwenty-nine discriminanc w i determined.

The data in this chart demonstrate the declining discriminating

power of each additional discriminant function.

" Page 20: The standard discriminant-function coefficients are
listed. The product of all normalized feature values and the

appropriate discriminant-function coefficient will be the dis-

criminant score used to classify each subject.

" Page 23: Here start listings of both the unstandardized

discriminant-function coefficients and the location in 29-

dimensional space of the centroids of each group. The centroid

is the mean discriminant-function score for each subject.

" Page 30: Classification results: Actual group is the subject

code number; "highest group D**2" is the classification result.
In all cases the group was classified correctly. "Probability

P(G/x)" is the probability that the sample belongs to Group G
given that the discriminant measure x was observed. "Probabilitv

P(x/G)" is the probability that the discriminant measure x would
be observed given that the sample is from Group G. The actkal

discriminant scores (upon which the classification is based) are

listed on the far right.

" Page 78: Territorial map of first two (most discriminating)

discriminant functions. This is a 2D representation oil data.
The centroids (*) are separated by numbers or letters (correspond-

ing to that particular group, numbered 0-9 or A-Z) that define

the equal probability lines between groups.

C-4

MISSION
* Of

Rom Air Development Center
RAVC pItan,6 and executeA6 %aeau'h, deveopment, ta.t and
zeteted acquisition p/to g'tat in 6uppo~t o6 Command, Contot
Commanicat.2on6 and lnteLLgence. (C31) act&'-tie.6. Technicat
and engineeting .6uppo4-t wtkin a-~ea4 oj technLcat comnpetenee
iA picovided -to ESV P/tog/am O66ice,6 (PO.6) and otheA ESO
etement6. The p~incip4at techrLicat mizzhon a'tea6 ae
commacotion6, eetomagnetic guiZdance and conttot, suit-
veiJ1ance o6 q/tound and ae~ozpace object6, ntetigence data
cotecton and handting, in~o'unation zyz-tem techno.Cogy,
iono6phe'zic p.'opagation, .6otd 6tate 6cience.6, rn.C/toc'we
phyg6c46 and eizect'onc Atiabitty, maintainabitity and
compatibiity.

